As part of a study that investigates the dynamics of the s = 1 2 XXZ model in the planar regime |∆| < 1, we discuss the singular nature of the Bethe ansatz equations for the case ∆ = 0 (XX model). We identify the general structure of the Bethe ansatz solutions for the entire XX spectrum, which include states with real and complex magnon momenta. We discuss the relation between the spinon or magnon quasiparticles (Bethe ansatz) and the lattice fermions (Jordan-Wigner representation). We present determinantal expressions for transition rates of spin fluctuation operators between Bethe wave functions and reduce them to product expressions. We apply the new formulas to two-spinon transition rates for chains with up to N = 4096 sites.
The exact one-to-one mapping between (spinless) Jordan-Wigner lattice fermions and (spin-1/2) spinons is established for all eigenstates of the one-dimensional s = 1/2 XX model on a lattice with an even or odd number N of lattice sites and periodic boundary conditions. Exact product formulas for the transition rates derived via Bethe ansatz are used to calculate asymptotic expressions of the 2-spinon and 4-spinon parts (for large even N ) as well as of the 1-spinon and 3-spinon parts (for large odd N ) of the dynamic spin structure factors. The observability of these spectral contributions is assessed for finite N and for N → ∞.
Abstract. The mapping between the fermion and spinon compositions of eigenstates in the one-dimensional spin-1/2 XX model on a lattice with N sites is used to describe the spinon interaction from two different perspectives: (i) For finite N the energy of all eigenstates is expressed as a function of spinon momenta and spinon spins, which, in turn, are solutions of a set of Bethe ansatz equations. The latter are the basis of an exact thermodynamic analysis in the spinon representation of the XX model. (ii) For N → ∞ the energy per site of spinon configurations involving any number of spinon orbitals is expressed as a function of reduced variables representing momentum, filling, and magnetization of each orbital. The spins of spinons in a single orbital are found to be coupled in a manner well described by an Ising-like equivalent-neighbor interaction, switching from ferromagnetic to antiferromagnetic as the filling exceeds a critical level. Comparisons are made with results for the Haldane-Shastry model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.