The initial contact of osteoblasts with implant surfaces is an important event for osseointegration of implants. Osseointegration of Ti6Al4V may be improved by precoating of its surface with collagen type I. In this study, the adhesion of rat calvarial osteoblasts to uncoated and collagen type I-coated titanium alloy was investigated over a period of 24 h. Collagen type I-coating accelerates initial adhesion of osteoblasts in the presence of fetal calf serum. One hour after plating, no differences in the percentage of adherent cells between the surfaces investigated were found. Adhesion of osteoblasts to uncoated surfaces was reduced by the GRGDSP peptide by about 70%, whereas adhesion to collagen type I-coated surfaces remained unaffected by treatment of the cells with the peptide. Cell adhesion to coated materials was reduced by about 80% by anti-integrin beta1 antibody. The integrin beta1 antibody did not influence the adhesion to uncoated titanium alloy. The results suggest that osteoblasts adhere to collagen type I-coated materials via integrin beta1 but not by interacting with RGD peptides, whereas adhesion to uncoated titanium alloy is mediated by RGD sequences but not via integrin beta1. Fibronectin does not seem to be involved in the adhesion of osteoblasts to either coated or uncoated titanium alloy.
Temporary bone replacement materials on the basis of calcium phosphates and hydroxyapatite (HAP) are used in surgery for filling bone defects. Components which are able to control the nucleation and crystal growth of HAP through their functional groups and which can additionally activate bone cells may be helpful in the development of materials with enhanced remodelling in vivo. In this study, the influence of O-phospho-L-serine (PS) on the materials properties of calcium phosphate bone cement composites was investigated. For up to an addition of 25 mg/g PS a strong increase in the stability of the cements under load was determined. The material was studied by scanning electron microscopy and transmission electron microscopy. A more dense microstructure and a plate-like morphology of the HAP-crystals were detected in the modified composites compared with the non-modified samples. By X-ray powder diffraction an inhibition of the dissolution of alpha-tricalcium phosphate (alpha-TCP) and dicalciumphosphate anhydrous (DCPA) particles was found. alpha-TCP and DCPA are the main constituents of the cement precursor. The results of cell culture studies using rat calvaria osteoblasts demonstrate a good viability of the cells on the PS-modified material. Furthermore, the proliferation and differentiation were found to be enhanced on the PS-modified material.
Hexokinase 2 from Saccharomyces cerevisiae is phosphorylated in vivo at serine-15 [Kriegel et al. (1994) Biochemistry 33, 148-152] and undergoes ATP-dependent autophosphorylation-inactivation in vitro when incubated in the presence of D-xylose [Fernandez et al. (1988) J. Gen. Microbiol. 134, 2493-2498]. This study identifies the site of inactivation by autophosphorylation as serine-158 by observation of a single tryptic peptide difference, peptide sequencing, and size determination by mass spectrometry. Mutation of serine-158 to alanine and cysteine, respectively, prevents autophosphorylation and causes a drastic decrease of the catalytic activity while mutational change to glutamate results in a complete loss of enzyme activity. The catalytically active mutant enzymes display an increased affinity for glucose and exhibit higher K(M) with respect to MgATP. Phosphoserine/phosphothreonine-specific protein phosphatase-2A completely reverses the autophosphorylative inactivation of the wild-type enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.