Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.
News from an old acquaintance: The streptavidin (STV)‐biotin binding system is frequently used for the decoration of DNA origami nanostructures (DON) to study biological systems. Here, a surprisingly high dynamic of the STV/DON interaction is reported, which is affected by the structure of the DNA linker system. Analysis of different mono‐ or bi‐dentate linker architectures on DON with a novel high‐speed atomic force microscope (HS‐AFM) enabling acquisition times as short as 50 ms per frame gave detailed insights into the dynamics of the DON/STV interaction, revealing dwell times in the sub‐100 millisecond range. The linker systems are also used to present biotinylated epidermal growth factor on DON to study the activation of the epidermal growth factor receptor signaling cascade in HeLa cells. The studies confirm that cellular activation correlated with the binding properties of linker‐specific STV/DON interactions observed by HS‐AFM. This work sheds more light on the commonly used STV/DON system and will help to further standardize the use of DNA nanostructures for the study of biological processes.
Hybridization of surface‐bound DNA with complementary strands is the basis of many biotechnological applications. Herein, the structure of interfacial coatings between substrate and bound DNA is a crucial element for hybridization behavior. Herein, three reactive surfaces for constructing DNA‐sensing platforms, namely, plain gold films on silicon, poly(bisphenolA‐co‐epichlorohydrin) (PBAG) surfaces with a brush‐like bilayer structure, and dibenzocyclooctyne monolayers (both on glass), are compared. Fluorescence imaging is employed to survey the effect of coating structure and conformation on hybridization performance. To better understand the interfacial structural properties and chemistry of the coated films, atomic force microscopy, water contact angle measurements, and X‐ray photoelectron spectroscopy are employed to characterize the surface morphology. DNA probe microarrays are created on the different platforms via microchannel cantilever spotting, and their performance for hybridizing with the DNA counterparts is assessed. While all three platforms work reliable for DNA detection, a protein‐binding assay reveals that PBAG surfaces offer the highest hybridization efficiency among these approaches. The results of the present work have significant implications for comprehension of the interactions between the DNA hybridization efficiency and the physico‐chemical properties of surface coatings and can inform the fabrication of DNA sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.