The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. It comprises one catalytic 20S proteasome and two axially positioned 19S regulatory complexes. The 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7 (refs 4, 5), but the mechanism responsible for the assembly of such a complex structure remains elusive. Here we report two chaperones, designated proteasome assembling chaperone-1 (PAC1) and PAC2, that are involved in the maturation of mammalian 20S proteasomes. PAC1 and PAC2 associate as heterodimers with proteasome precursors and are degraded after formation of the 20S proteasome is completed. Overexpression of PAC1 or PAC2 accelerates the formation of precursor proteasomes, whereas knockdown by short interfering RNA impairs it, resulting in poor maturation of 20S proteasomes. Furthermore, the PAC complex provides a scaffold for alpha-ring formation and keeps the alpha-rings competent for the subsequent formation of half-proteasomes. Thus, our results identify a mechanism for the correct assembly of 20S proteasomes.
A unifying feature of many neurodegenerative disorders is the accumulation of polyubiquitinated protein inclusions in dystrophic neurons, e.g. containing ␣-synuclein, which is suggestive of an insufficient proteasomal activity. We demonstrate that ␣-synuclein and 20 S proteasome components co-localize in Lewy bodies and show that subunits from 20 S proteasome particles, in contrast to subunits of the 19 S regulatory complex, bind efficiently to aggregated filamentous but not monomeric ␣-synuclein. Proteasome binding to insoluble ␣-synuclein filaments and soluble ␣-synuclein oligomers results in marked inhibition of its chymotrypsin-like hydrolytic activity through a non-competitive mechanism that is mimicked by model amyloid-A peptide aggregates. Endogenous ligands of aggregated ␣-synuclein like heat shock protein 70 and glyceraldehyde-6-phosphate dehydrogenase bind filaments and inhibit their anti-proteasomal activity. The inhibitory effect of amyloid aggregates may thus be amenable to modulation by endogenous chaperones and possibly accessible for therapeutic intervention.
The 20S proteasome is a catalytic core of the 26S proteasome, a central enzyme in the degradation of ubiquitin-conjugated proteins. It is composed of 14 distinct gene products that form four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). It is reported that the biogenesis of mammalian 20S proteasomes is assisted by proteasome-specific chaperones, named PAC1, PAC2, and hUmp1, but the details are still unknown. Here, we report the identification of a chaperone, designated PAC3, as a component of alpha rings. Although it can intrinsically bind directly to both alpha and beta subunits, PAC3 dissociates before the formation of half-proteasomes, a process coupled with the recruitment of beta subunits and hUmp1. Knockdown of PAC3 impaired alpha ring formation. Further, PAC1/2/3 triple knockdown resulted in the accumulation of disorganized half-proteasomes that are incompetent for dimerization. Our results describe a cooperative system of multiple chaperones involved in the correct assembly of mammalian 20S proteasomes.
Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable gamma-interferon-inducible catalytic beta-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit specific antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core alpha-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some significant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immunofluorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following gamma-interferon treatment of cultured cells but gamma-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes.
Two activators, named PA700 and PA28, are known to bind to 20 S proteasomes, forming two different complexes. The PA700-proteasome complex, also known as the 26 S proteasome, can degrade intact proteins, whereas complexes with PA28 can degrade only peptides. Monoclonal antibodies to 20 S proteasomes or the p45 ATPase subunit (Trip1, Sug1) of PA700 precipitated the same set of proteins from HeLa extracts, including six different ATPase subunits of PA700. This shows that p45 is not present in other protein complexes and suggests that all 26 S proteasome particles contain the same set of ATPase subunits. Interferons alpha and gamma had no effect on the composition of the 26 S proteasome, except for the replacement of subunits delta, MB1 and Z with Lmp2, Lmp7 and MECL1 respectively. Surprisingly, antibodies to PA28 precipitated p42, a component of PA700. Conversely, anti-p45 antibodies precipitated not only 26 S proteasomes but also PA28 alpha, beta and gamma, indicating that 20 S proteasomes can simultaneously bind both PA700 and PA28. PA28 alpha beta is known to be involved in antigen presentation. Conceivably, intact substrate proteins are recognized by PA700 and fed into proteasomes whose cleavage specificity is optimized for antigen presentation on MHC class I by PA28 and three interferon inducible proteasome subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.