Most overweight individuals do not develop diabetes due to compensatory islet responses to restore glucose homeostasis. Therefore, regulatory pathways that promote β-cell compensation are potential targets for treatment of diabetes. The melastatin transient receptor potential 7 protein (TRPM7), harboring a cation channel and a serine/threonine kinase, has been implicated in controlling cell growth and proliferation. Here, we report that selective deletion of Trpm7 in β-cells disrupts insulin secretion and leads to progressive glucose intolerance. We indicate that the diminished insulinotropic response in β-cell-specific Trpm7 knockout mice is caused by decreased insulin production due to an impaired enzymatic activity of this protein. Accordingly, high-fat fed mice with a genetic loss of TRPM7 kinase activity (Trpm7 R/R ) display a marked glucose intolerance accompanied by hyperglycemia. These detrimental glucoregulatory effects are engendered by reduced compensatory β-cell responses due to mitigated protein kinase B (AKT)/ERK signaling. Collectively, our data identify TRPM7 kinase as a novel regulator of insulin synthesis, β-cell dynamics, and glucose homeostasis under obesogenic diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.