Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.
Current state-of-the-art medical deformable image registration (DIR) methods optimize a weighted sum of key objectives of interest. Having a pre-determined weight combination that leads to high-quality results for any instance of a specific DIR problem (i.e., a class solution) would facilitate clinical application of DIR. However, such a combination can vary widely for each instance and is currently often manually determined. A multi-objective optimization approach for DIR removes the need for manual tuning, providing a set of high-quality trade-off solutions. Here, we investigate machine learning for a multi-objective class solution, i.e., not a single weight combination, but a set thereof, that, when used on any instance of a specific DIR problem, approximates such a set of trade-off solutions. To this end, we employed a multi-objective evolutionary algorithm to learn sets of weight combinations for three breast DIR problems of increasing difficulty: 10 prone-prone cases, 4 prone-supine cases with limited deformations and 6 prone-supine cases with larger deformations and image artefacts. Clinically-acceptable results were obtained for the first two problems. Therefore, for DIR problems with limited deformations, a multi-objective class solution can be machine learned and used to compute straightforwardly multiple high-quality DIR outcomes, potentially leading to more efficient use of DIR in clinical practice.
Gradient methods and their value in single-objective, realvalued optimization are well-established. As such, they play a key role in tackling real-world, hard optimization problems such as deformable image registration (DIR). A key question is to which extent gradient techniques can also play a role in a multi-objective approach to DIR. We therefore aim to exploit gradient information within an evolutionary-algorithmbased multi-objective optimization framework for DIR. Although an analytical description of the multi-objective gradient (the set of all Pareto-optimal improving directions) is available, it is nontrivial how to best choose the most appropriate direction per solution because these directions are not necessarily uniformly distributed in objective space. To address this, we employ a Monte-Carlo method to obtain a discrete, spatially-uniformly distributed approximation of the set of Pareto-optimal improving directions. We then apply a diversification technique in which each solution is associated with a unique direction from this set based on its multi-as well as single-objective rank. To assess its utility, we compare a state-of-the-art multi-objective evolutionary algorithm with three different hybrid versions thereof on several benchmark problems and two medical DIR problems. Results show that the diversification strategy successfully leads to unbiased improvement, helping an adaptive hybrid scheme solve all problems, but the evolutionary algorithm remains the most powerful optimization method, providing the best balance between proximity and diversity.
A multi-objective optimization approach is o en followed by an a posteriori decision-making process, during which the most appropriate solution of the Pareto set is selected by a professional in the eld. Conventional visualization methods do not correct for Pareto fronts with irregularly-spaced solutions. However, achieving a uniform spread of solutions can make the decision-making process more intuitive when decision tools such as sliders, which represent the preference for each objective, are used. We propose a method that maps an m-dimensional Pareto front to an (m − 1)-simplex and spreads out points to achieve a more uniform distribution of these points in the simplex while maintaining the local neighborhood structure of the solutions as much as possible. is set of points can then more intuitively be navigated due to the more uniform distribution. We test our approach on a set of non-uniformly spaced 3D Pareto fronts of a real-world problem: deformable image registration of medical images. e results of these experiments are visualized as points in a triangle, showing that we indeed achieve a representation of the Pareto front with a near-uniform distribution of points where these are still positioned as expected, i.e., according to their quality in each of the objectives of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.