Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices at the edge of the current network. To achieve higher performance in this new paradigm, one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis are used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource and less extensive towards the estimation, discovery, and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of nonfunctional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.
The edge computing paradigm comes with a promise of lower application latency compared to the cloud. Moreover, offloading user device computations to the edge enables running demanding applications on resource-constrained mobile end devices. However, there is a lack of workload models specific to edge offloading using applications as their basis. In this work, we build upon the reconfigurable open-source mixed reality (MR) framework MR-Leo as a vehicle to study resource utilisation and quality of service for a time-critical mobile application that would have to rely on the edge to be widely deployed. We perform experiments to aid estimating the resource footprint and the generated load by MR-Leo, and propose an application model and a statistical workload model for it. The idea is that such empirically-driven models can be the basis of evaluations of edge algorithms within simulation or analytical studies. A comparison with a workload model used in a recent work shows that the computational demand of MR-Leo exhibits very different characteristics from those assumed for MR applications earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.