Recent works showed the vulnerability of image classifiers to adversarial attacks in the digital domain. However, the majority of attacks involve adding small perturbation to an image to fool the classifier. Unfortunately, such procedures can not be used to conduct a real-world attack, where adding an adversarial attribute to the photo is a more practical approach.In this paper, we study the problem of real-world attacks on face recognition systems. We examine security of one of the best public face recognition systems, LResNet100E-IR with ArcFace loss, and propose a simple method to attack it in the physical world. The method suggests creating an adversarial patch that can be printed, added as a face attribute and photographed; the photo of a person with such attribute is then passed to the classifier such that the classifier's recognized class changes from correct to the desired one. Proposed generating procedure allows projecting adversarial patches not only on different areas of the face, such as nose or forehead but also on some wearable accessory, such as eyeglasses.
The literature on robustness towards common corruptions shows no consensus on whether adversarial training can improve the performance in this setting. First, we show that, when used with an appropriately selected perturbation radius, p adversarial training can serve as a strong baseline against common corruptions. Then we explain why adversarial training performs better than data augmentation with simple Gaussian noise which has been observed to be a meaningful baseline on common corruptions. Related to this, we identify the σ-overfitting phenomenon when Gaussian augmentation overfits to a particular standard deviation used for training which has a significant detrimental effect on common corruption accuracy. We discuss how to alleviate this problem and then how to further enhance p adversarial training by introducing an efficient relaxation of adversarial training with learned perceptual image patch similarity as the distance metric. Through experiments on CIFAR-10 and ImageNet-100, we show that our approach does not only improve the p adversarial training baseline but also has cumulative gains with data augmentation methods such as AugMix, ANT, and SIN leading to state-of-the-art performance on common corruptions. The code of our experiments is publicly available at https://github.com/tml-epfl/adv-training-corruptions.
Recent studies proved that deep learning approaches achieve remarkable results on face detection task. On the other hand, the advances gave rise to a new problem associated with the security of the deep convolutional neural network models unveiling potential risks of DCNNs based applications. Even minor input changes in the digital domain can result in the network being fooled. It was shown then that some deep learningbased face detectors are prone to adversarial attacks not only in a digital domain but also in the real world. In the paper, we investigate the security of the well-known cascade CNN face detection system -MTCNN and introduce an easily reproducible and a robust way to attack it. We propose different face attributes printed on an ordinary white and black printer and attached either to the medical face mask or to the face directly. Our approach is capable of breaking the MTCNN detector in a realworld scenario.
Research on adversarial robustness is primarily focused on image and text data. Yet, many scenarios in which lack of robustness can result in serious risks, such as fraud detection, medical diagnosis, or recommender systems often do not rely on images or text but instead on tabular data. Adversarial robustness in tabular data poses two serious challenges. First, tabular datasets often contain categorical features, and therefore cannot be tackled directly with existing optimization procedures. Second, in the tabular domain, algorithms that are not based on deep networks are widely used and offer great performance, but algorithms to enhance robustness are tailored to neural networks (e.g. adversarial training). In this paper, we tackle both challenges. We present a method that allows us to train adversarially robust deep networks for tabular data and to transfer this robustness to other classifiers via universal robust embeddings tailored to categorical data. These embeddings, created using a bilevel alternating minimization framework, can be transferred to boosted trees or random forests making them robust without the need for adversarial training while preserving their high accuracy on tabular data. We show that our methods outperform existing techniques within a practical threat model suitable for tabular data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.