Liposarcomas are malignant tumors derived embryologically from mesodermal tissues. An unusual site of presentation is the spermatic cord, presenting as an inguinal or scrotal mass. We report a rare case of a liposarcoma of the spermatic cord, mimicking a testicular tumor. The patient was operated, and an orchidectomy, including the tumor, was performed. To our knowledge, there are about 185 similar cases reported in the literature.
Neuronal marker expression is a frequent feature of GBM. Its prognostic significance is limited to the giant cell GBMs expressing two or more neuronal markers, these being associated with shorter survival.
Neuronal/mixed glioneuronal tumors are central nervous system neoplasms composed of neoplastic neuronal cell components or a mixture of glial and neuronal elements. They occur in cerebral hemispheres, posterior fossa, and spinal cord. Compared with other tumors at these locations, diencephalic neuronal/glioneuronal tumors are very rare and therefore not well characterized. We hereby performed clinicopathologic evaluation on 10 neuronal/glioneuronal tumors arising from the diencephalic region. Morphologically, these tumors resemble their histologic counterparts in other locations, except that lymphocytic infiltrates and microcalcifications are more common than Rosenthal fibers or eosinophilic granular bodies. The BRAFV600 mutation rate is 75%. Given the high percentage of samples being small biopsy specimens, the subtle histologic features and molecular findings greatly aided in establishing the pathologic diagnosis in several cases. At a median follow-up of 42 months, 71% of the tumors demonstrated radiological recurrence or progression, with median progression-free survival of 18 months. Recurrence/progression is observed in tumors across different histologic subtypes, necessitating additional therapies in 56% of the cases. Despite their bland histology, diencephalic neuronal/glioneuronal tumors are not clinically indolent. Their frequent recurrences warrant a close follow-up, and the prevalent BRAF mutation makes MAPK pathway inhibition a plausible treatment option when conventional therapies fail.
Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard tissue sampling fails to capture the full heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are currently actively enrolling patients for our 'Image-Based Mapping of Brain Tumors' study. Patients are eligible for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their presurgical scan. During surgery, sample locations are tracked using neuronavigation and genetic aberrations are later quantified through whole-exome and RNA sequencing. The collected specimens from this NCI-funded research study will be primarily used to generate regional maps of the spatial distribution of tumor cell density and/or treatment-related key genetic marker status across tumors, within clinically feasible time frames, to identify biopsy and/or treatment targets based on insight from the entire tumor makeup regional histologic and genetic makeup. This type of methodology, when delivered within clinically feasible time frames, has the potential to further inform medical decision-making by improving surgical intervention, radiation, and targeted drug therapy for patients with glioma. From October 1, 2017 to October 31, 2022, this study has enrolled 186 patients with 197 surgeries, of which 163 resulted in the successful collection of image-guided biopsy samples. A total of 995 biopsies have been collected of which 962 are image localized, with a mean of 5.90 image-localized samples per surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.