The electron transfer between the two quinones Q(A) and Q(B) in the bacterial photosynthetic reaction center (bRC) is coupled to a conformational rearrangement. Recently, the X-ray structures of the dark-adapted and light-exposed bRC from Rhodobacter sphaeroides were solved, and the conformational changes were characterized structurally. We computed the reaction free energy for the electron transfer from to Q(B) in the X-ray structures of the dark-adapted and light-exposed bRC from Rb. sphaeroides. The computation was done by applying an electrostatic model using the Poisson-Boltzmann equation and Monte Carlo sampling. We accounted for possible protonation changes of titratable groups upon electron transfer. According to our calculations, the reaction energy of the electron transfer from to Q(B) is +157 meV for the dark-adapted and -56 meV for the light-exposed X-ray structure; i.e., the electron transfer is energetically uphill for the dark-adapted structure and downhill for the light-exposed structure. A common interpretation of experimental results is that the electron transfer between and Q(B) is either gated or at least influenced by a conformational rearrangement: A conformation in which the electron transfer from to Q(B) is inactive, identified with the dark-adapted X-ray structure, changes into an electron-transfer active conformation, identified with the light-exposed X-ray structure. This interpretation agrees with our computational results if one assumes that the positive reaction energy for the dark-adapted X-ray structure effectively prevents the electron transfer. We found that the strongly coupled pair of titratable groups Glu-L212 and Asp-L213 binds about one proton in the dark-adapted X-ray structure, where the electron is mainly localized at Q(A), and about two protons in the light-exposed structure, where the electron is mainly localized at Q(B). This finding agrees with recent experimental and theoretical studies. We compare the present results for the bRC from Rb. sphaeroides to our recent studies on the bRC from Rhodopseudomonas viridis. We discuss possible mechanisms for the gated electron transfer from to Q(B) and relate them to theoretical and experimental results.
A combination of density functional theory (DFT) and solution of the Poisson equation for continuum dielectric media was used to compute accurate redox potentials for several mononuclear transition metal complexes including iron, manganese and nickel. Progress was achieved by altering the B3LYP DFT functional (B4(XQ3)LYPapproach) and supplementing it with an empirical correction term, which is applied after the quantum-chemical DFT computations. Calculation of the 58 redox potentials of 48 different transition metal complexes shows a root mean square deviation from experimental values of 65 mV. The quality of the present approach becomes also evident by observing that the energetic order of the spin multiplicity is fulfilled for all considered transition metal complexes. For some transition metal complexes it was necessary to account for the dielectric environment before agreement with the corresponding measured spin multiplicities was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.