We present Sequoia, a programming language designed to facilitate the development of memory hierarchy aware parallel programs that remain portable across modern machines featuring different memory hierarchy configurations. Sequoia abstractly exposes hierarchical memory in the programming model and provides language mechanisms to describe communication vertically through the machine and to localize computation to particular memory locations within it. We have implemented a complete programming system, including a compiler and runtime systems for Cell processor-based blade systems and distributed memory clusters, and demonstrate efficient performance running Sequoia programs on both of these platforms.
Prognostic models to predict the risk of clinical deterioration in acute COVID-19 are required to inform clinical management decisions. Among 75,016 consecutive adults across England, Scotland and Wales prospectively recruited to the ISARIC Coronavirus Clinical Characterisation Consortium (ISARIC4C) study, we developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) using 11 routinely measured variables. We used internal-external cross-validation to show consistent measures of discrimination, calibration and clinical utility across eight geographical regions. We further validated the final model in held-out data from 8,252 individuals in London, with similarly consistent performance (C-statistic 0.77 (95% CI 0.75 to 0.78); calibration-in-the-large 0.01 (-0.04 to 0.06); calibration slope 0.96 (0.90 to 1.02)). Importantly, this model demonstrated higher net benefit than using other candidate scores to inform decision-making. Our 4C Deterioration model thus demonstrates unprecedented clinical utility and generalisability to predict clinical deterioration among adults hospitalised with COVID-19.
Abstract:We report low-loss hollow-core photonic bandgap fibers free from surface modes. They have low attenuation over the full spectral width of the bandgap, and approximately halved dispersion and dispersion slope compared to previous fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.