ABSTRACT:The acquisition of 3D point data with the use of both aerial laser scanning (ALS) and matching of aerial stereo images coupled with advances in image processing algorithms in the past years provide opportunities to map land cover types with better precision than before. The present study applies Object-Based Image Analysis (OBIA) to 3D point cloud data obtained from matching of stereo aerial images together with spectral data to map land cover types of the Nord-Trøndelag county of Norway. The multi-resolution segmentation algorithm of the Definiens eCognition TM software is used to segment the scenes into homogenous objects. The objects are then classified into different land cover types using rules created based on the definitions given for each land cover type by the Norwegian Forest and Landscape Institute. The quality of the land cover map was evaluated using data collected in the field as part of the Norwegian National Forest Inventory. The results show that the classification has an overall accuracy of about 80% and a kappa index of about 0.65. OBIA is found to be a suitable method for utilizing 3D remote sensing data for land cover mapping in an effort to replace manual delineation methods.
Abstract. Planning sustainable use of land resources and environmental monitoring benefit from accurate and detailed forest information. The basis of accurate forest information is data on the spatial extent of forests. In Norway land resource maps have been carefully created by field visits and aerial image interpretation for over four decades with periodic updating. However, due to prioritization of agricultural and built-up areas, and high requirements with respect to the map accuracy, forest areas and outfields have not been frequently updated. Consequently, in some part of the country, the map has not been updated since its first creation in the 1960s. The Sentinel-2 satellite acquires images with high spatial and temporal resolution which provides opportunities for creating cloud-free mosaic images over areas that are often covered with clouds. Here, we combine object-based image analysis with machine learning methods in an automated framework to map forest area in Sentinel-2 mosaic images. The images are segmented using the eCogntion™ software. Training data are collected automatically from the existing land resource map and filtered using height and greenness information so that the training samples certainly represent their respective classes. Two machine learning algorithms, namely Random Forest (RF) and the Multilayer Perceptron Neural Network (MLP), are then trained and validated before mapping forest area. The effects of including and excluding some features on the classification accuracy is investigated. The results show that the method produces forest cover map at very high accuracy (up to 97%). The MLP performs better than the RF algorithm both in classification accuracy and in robustness against inclusion and exclusion of features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.