Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes.
Genome-wide association (GWA) studies have identified multiple new genomic loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)1-11. Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to discover loci at which common alleles have modest effects, we performed meta-analysis of three T2D GWA scans encompassing 10,128 individuals of European-descent and ~2.2 million SNPs (directly genotyped and imputed). Replication testing was performed in an independent sample with an effective sample size of up to 53,975. At least six new loci with robust evidence for association were detected, including the JAZF1 (p=5.0×10 −14 ), CDC123/CAMK1D (p=1.2×10 −10 ), TSPAN8/ LGR5 (p=1.1×10 −9 ), THADA (p=1.1×10 −9 ), ADAMTS9 (p=1.2×10 −8 ), and NOTCH2 (p=4.1×10 −8 ) gene regions. The large number of loci with relatively small effects indicates the value of large discovery and follow-up samples in identifying additional clues about the inherited basis of T2D.Genome-wide association studies are unbiased by previous hypotheses concerning candidate genes and pathways, but challenged by the modest effect sizes of individual common susceptibility variants and the need for stringent statistical thresholds. For example, the largest allelic odds ratio of any established common variant for T2D is ~1.35 (TCF7L2), with the nine other validated associations to common variants (excluding FTO, which has its primary effect through obesity) having allelic odds ratios between 1.1 and 1. 21-6,11,12. To augment power to detect additional loci of similar and/or smaller effect, we increased sample size by combining three previously published GWA studies (Diabetes Genetics Initiative [DGI], Finland-United States Investigation of NIDDM Genetics [FUSION], and Wellcome Trust Case Control Consortium [WTCCC])1-4, and extended SNP coverage by imputing untyped SNPs based on patterns of haplotype variation from the HapMap dataset13 (Table 1).We started with a set of genotyped autosomal SNPs that passed quality control (QC) filters in each study: in WTCCC, 393,143 SNPs from the Affymetrix 500k chip (MAF>0.01; 1,924 cases and 2,938 population-based controls from the Wellcome Trust Case Control Consortium3,4); in DGI, 378,860 Using these directly measured and imputed genotypes, we tested for association of each SNP with T2D in each study separately, corrected each study for residual population stratification, cryptic relatedness or technical artifacts using genomic control, and then combined these results in a genome-wide meta-analysis across a total of 10,128 samples (4,549 cases, 5,579 controls) (Methods; Supplementary Methods). We calculated that this sample size provides reasonable power to detect additional variants with properties similar to those previously identified by less formal data combination efforts1,2,4 (Supplementary Table 2). Unless otherwise indicated, results presented are derived from...
Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P < 1.6 x 10(-7). This includes previously identified variants close to or in the FTO, MC4R, BDNF and SH2B1 genes, in addition to variants at seven loci not previously connected with obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.