In healthy individuals, acute changes in cholesterol intake produce modest changes in plasma cholesterol levels. A striking exception occurs in sitosterolemia, an autosomal recessive disorder characterized by increased intestinal absorption and decreased biliary excretion of dietary sterols, hypercholesterolemia, and premature coronary atherosclerosis. We identified seven different mutations in two adjacent, oppositely oriented genes that encode new members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family (six mutations in ABCG8 and one in ABCG5) in nine patients with sitosterolemia. The two genes are expressed at highest levels in liver and intestine and, in mice, cholesterol feeding up-regulates expressions of both genes. These data suggest that ABCG5 and ABCG8 normally cooperate to limit intestinal absorption and to promote biliary excretion of sterols, and that mutated forms of these transporters predispose to sterol accumulation and atherosclerosis.
Mutations in the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 have recently been shown to cause the autosomal recessive disorder sitosterolemia. Here we demonstrate that the ABCG5 and ABCG8 genes are direct targets of the oxysterol receptors liver X receptor (LXR) ␣ and LXR. Diets containing high cholesterol markedly increased the expression of ABCG5/G8 mRNA in mouse liver and intestine. This increase was also observed using synthetic ligands of LXR and its heterodimeric partner, the retinoid X receptor. In situ hybridization analyses of tissues from LXR agonisttreated mice revealed that ABCG5/G8 mRNA is located in hepatocytes and enterocytes and is increased upon LXR activation. In addition, expression of the LXR target gene ABCA1, previously implicated in the control of cholesterol absorption, was also dramatically up-regulated in jejunal enterocytes upon exposure to LXR agonists. These changes in ABC transporter gene expression were not observed in mice lacking LXRs. Furthermore, in the rat hepatoma cell line FTO2B, LXRdependent transcription of the ABCG5/G8 genes was cycloheximide-resistant, indicating that these genes are directly regulated by LXRs. The addition of ABCG5 and ABCG8 to the growing list of LXR target genes further supports the notion that LXRs serve as sterol sensors to coordinately regulate sterol catabolism, storage, efflux, and elimination.Cholesterol homeostasis is maintained by a series of regulatory pathways to control the synthesis of endogenous cholesterol, the absorption of dietary sterol, and the elimination of cholesterol and its catabolic end products, bile acids. Transcriptional control of many genes vital to these processes can be attributed to two families of transcription factors: the sterolregulatory element-binding proteins (SREBPs), 1 especially SREBP-2, which control the production of key enzymes in cholesterol biosynthesis (for review, see Ref. 1), and the liver X receptors LXR␣ and LXR, which regulate the expression of genes involved in cholesterol efflux, storage, catabolism, and elimination (for review, see Ref.2). LXRs are ligand-activated transcription factors that are members of the nuclear hormone receptor superfamily. LXRs are bound and activated by a specific class of naturally occurring oxysterols (3-5) as well as a recently described nonsteroidal synthetic agonist, T0901317 (6, 7). LXRs bind DNA as obligate heterodimers with the retinoid X receptors (RXRs) and can be activated by either LXR agonists or RXR ligands. The RXR/LXR heterodimer binds to a DNA sequence comprised of two direct repeats of the hexanucleotide motif AGGTCA separated by four bases, referred to as an LXR response element of the DR4 type (8). Upon binding ligand, LXR undergoes a conformational change that recruits coactivator proteins and enhances transcription of the target gene. Increasing evidence suggests that the RXR/LXR heterodimer serves as a sensor that responds to high intracellular sterol concentrations by increasing the expression of genes that reduce the cellular stero...
Two ATP-binding cassette (ABC) transporters, ABCG5 and ABCG8, have been proposed to limit sterol absorption and to promote biliary sterol excretion in humans. To test this hypothesis, a P1 clone containing the human ABCG5 and ABCG8 genes was used to generate transgenic mice. The transgenes were expressed primarily in the liver and small intestine, mirroring the expression pattern of the endogenous genes. Transgene expression only modestly affected plasma and liver cholesterol levels but profoundly altered cholesterol transport. The fractional absorption of dietary cholesterol was reduced by about 50%, and biliary cholesterol levels were increased more than fivefold. Fecal neutral sterol excretion was increased three- to sixfold and hepatic cholesterol synthesis increased two- to fourfold in the transgenic mice. No significant changes in the pool size, composition, and fecal excretion of bile acids were observed in the transgenic mice. Transgene expression attenuated the increase in hepatic cholesterol content induced by consumption of a high cholesterol diet. These results demonstrate that increased expression of ABCG5 and ABCG8 selectively drives biliary neutral sterol secretion and reduces intestinal cholesterol absorption, leading to a selective increase in neutral sterol excretion and a compensatory increase in cholesterol synthesis.
IntroductionMultiple physiological mechanisms limit the entry of dietary sterols into the bloodstream. Excess cholesterol is removed from the body either by direct secretion into the bile or after conversion to bile acids. Although the mechanisms by which dietary sterols are absorbed by the intestine and secreted into the bile have been well characterized physiologically, the machinery responsible for these two processes has not been molecularly defined. The most abundant sterols in the human diet are cholesterol, the principal animal-derived sterol, and sitosterol, the major plant sterol. These two sterols, although structurally very similar, are handled quite differently by the intestine and liver of normal mammals. The absorption of sitosterol is significantly more limited than that of cholesterol. Humans absorb less than 5% of dietary sitosterol (1), and the small amount of sitosterol that reaches the liver is preferentially secreted into the bile (2). Consequently, plasma levels of sitosterol are very low (<1 mg/dl) in normal individuals. A much higher proportion (45-55%) of dietary cholesterol is absorbed by the proximal small intestine in humans, and the fractional excretion of sterols into the bile is lower for cholesterol than for sitosterol (3).Recently, a critical component of the transport machinery for dietary sterols was revealed by the finding that mutations in the genes encoding the ATPbinding cassette (ABC) half-transporters ABCG5 and ABCG8 cause sitosterolemia, a rare autosomal recessive disorder of sterol metabolism (4, 5). Patients with sitosterolemia have increased fractional absorption and decreased biliary secretion of all dietary neutral sterols (3, 6-8), which invariably leads to dramatically elevated plasma levels of sitosterol and other plant sterols. Most sitosterolemic individuals are also hypercholesterolemic (9). The disease phenotypically resembles homozygous familial hypercholesterolemia in that both diseases are characterized by the development of xanthomas in childhood accompanied by premature coronary atherosclerosis (6, 9, 10). ABCG5 and ABCG8 are expressed predominantly in hepatocytes and enterocytes in the proximal small intestine of Two ATP-binding cassette (ABC) transporters, ABCG5 and ABCG8, have been proposed to limit sterol absorption and to promote biliary sterol excretion in humans. To test this hypothesis, a P1 clone containing the human ABCG5 and ABCG8 genes was used to generate transgenic mice. The transgenes were expressed primarily in the liver and small intestine, mirroring the expression pattern of the endogenous genes. Transgene expression only modestly affected plasma and liver cholesterol levels but profoundly altered cholesterol transport. The fractional absorption of dietary cholesterol was reduced by about 50%, and biliary cholesterol levels were increased more than fivefold. Fecal neutral sterol excretion was increased three-to sixfold and hepatic cholesterol synthesis increased twoto fourfold in the transgenic mice. No significant changes in the pool s...
The proprotein convertase subtilisin/kexin type 9 (PCSK9) gene is involved in the post-transcriptional regulation of the low-density lipoprotein (LDL) receptors (LDLR). Mutations in the PCSK9 gene have been associated with both hypocholesterolemia and hypercholesterolemia through 'loss-of-function' and 'gain-of-function' mechanisms, respectively. We have studied the effect of the four loss-of-function mutations R46L, G106R, N157K and R237W and the two gain-of-function mutations S127R and D374Y on the autocatalytic activity of PCSK9, as well as on the amount of the cell surface LDLR and internalization of LDL in transiently transfected HepG2 cells. The two groups of mutations did not differ with respect to autocatalytic activity of PCSK9, but they did differ with respect to the amount of cell surface LDLR and internalization of LDL. The four loss-of-function mutations had a 16% increased level of cell surface LDLR and a 35% increased level of internalization of LDL as compared with WT-PCSK9. The two gain-of-function mutations had a 23% decreased level of cell surface LDLR and a 38% decreased level of internalization of LDL as compared with WT-PCSK9. Our studies have also shown that transfer of media from transiently transfected HepG2 cells to untransfected HepG2 cells, reduces the amount of cell surface LDLR and internalization of LDL in the untransfected cells within 20 min of media transfer. Thus, PCSK9 or a factor acted upon by PCSK9, is secreted from the transfected cells and degrades LDLR both in transfected and untransfected cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.