The G-protein-coupled lactate receptor, GPR81 (HCA1), is known to promote lipid storage in adipocytes by downregulating cAMP levels. Here, we show that GPR81 is also present in the mammalian brain, including regions of the cerebral neocortex and hippocampus, where it can be activated by physiological concentrations of lactate and by the specific GPR81 agonist 3,5-dihydroxybenzoate to reduce cAMP. Cerebral GPR81 is concentrated on the synaptic membranes of excitatory synapses, with a postsynaptic predominance. GPR81 is also enriched at the blood-brain-barrier: the GPR81 densities at endothelial cell membranes are about twice the GPR81 density at membranes of perivascular astrocytic processes, but about one-seventh of that on synaptic membranes. There is only a slight signal in perisynaptic processes of astrocytes. In synaptic spines, as well as in adipocytes, GPR81 immunoreactivity is located on subplasmalemmal vesicular organelles, suggesting trafficking of the protein to and from the plasma membrane. The results indicate roles of lactate in brain signaling, including a neuronal glucose and glycogen saving response to the supply of lactate. We propose that lactate, through activation of GPR81 receptors, can act as a volume transmitter that links neuronal activity, cerebral energy metabolism and energy substrate availability.
Two human homologs of the Escherichia coli AlkB protein, denoted hABH2 and hABH3, were recently shown to directly reverse 1-methyladenine (1meA) and 3-methylcytosine (3meC) damages in DNA. We demonstrate that mice lacking functional mABH2 or mABH3 genes, or both, are viable and without overt phenotypes. Neither were histopathological changes observed in the gene-targeted mice. However, in the absence of any exogenous exposure to methylating agents, mice lacking mABH2, but not mABH3 defective mice, accumulate significant levels of 1meA in the genome, suggesting the presence of a biologically relevant endogenous source of methylating agent. Furthermore, embryonal fibroblasts from mABH2-deficient mice are unable to remove methyl methane sulfate (MMS)-induced 1meA from genomic DNA and display increased cytotoxicity after MMS exposure. In agreement with these results, we found that in vitro repair of 1meA and 3meC in double-stranded DNA by nuclear extracts depended primarily, if not solely, on mABH2. Our data suggest that mABH2 and mABH3 have different roles in the defense against alkylating agents.
We have proposed that lactate is a "volume transmitter" in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA 1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the cerebral neocortex and the hippocampus, where it can be stimulated by physiological concentrations of lactate and by the HCAR1 agonist 3,5-dihydroxybenzoate to reduce cAMP levels. Cerebral HCAR1 is concentrated on the postsynaptic membranes of excitatory synapses and also is enriched at the bloodbrain barrier. In synaptic spines and in adipocytes, HCAR1 immunoreactivity is also located on subplasmalemmal vesicular organelles, suggesting trafficking to and from the plasma membrane. Through activation of HCAR1, lactate can act as a volume transmitter that links neuronal activity, cerebral blood flow, energy metabolism, and energy substrate availability, including a glucoseand glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress, and schizophrenia and in the deposition of phosphorylated tau protein in Alzheimer's disease. HCAR1 could serve to ameliorate these conditions and might also act through downstream mechanisms other than cAMP. Lactate exits cells through monocarboxylate transporters in an equilibrating manner and through astrocyte anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells. V C 2015 Wiley Periodicals, Inc.Key words: lactate; volume transmitter; cAMP; hippocampus L-lactate, pyruvate, and the ketone bodies bhydroxybutyrate and acetoacetate are monocarboxylates that are carried across different cell membranes by monocarboxylate transporters (MCTs; Poole and Halestrap, 1994;Bergersen et al., 1999Bergersen et al., , 2001Pierre et al., 2000; for review see Bergersen, 2007Bergersen, , 2015Halestrap, 2013). Llactate is the most abundant MCT substrate in the brain, and its cerebral concentration varies based on, for instance, metabolic rate, oxygen availability, neuronal firing, and serum lactate levels. The MCTs mediate facilitated cotransport of monocarboxylate anion and proton, meaning that they serve to equilibrate substrate concentrations across cell membranes, with the combined concentration gradients of monocarboxylate and proton as the driving force. Hence, L-lactate and other MCT substrates migrate from sites of production toward sites of consumption, such as between different cells within an organ or among different organs via the blood stream. The equilibrating diffusion of lactate via MCTs between cells and the extracellular space provide a basis for lactate acting as a "volume transmitter" because it allows lactate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.