This paper provides information about the distribution, structure, and ecology of the world's largest alpine ecosystem, the Kobresia pygmaea pastures in the southeastern Tibetan plateau. The environmental importance of these Cyperaceae mats derives from the extremely firm turf, which protects large surfaces against erosion, including the headwaters of the Huang He, Yangtze, Mekong, Salween, and Brahmaputra. The emphasis of the present article is on the climate-driven evolution and recent dynamics of these mats under the grazing impact of small mammals and livestock. Considering pedological analyses, radiocarbon datings, and results from exclosure experiments, we hypothesize that the majority of K. pygmaea mats are human-induced and replace forests, scrub, and taller grasslands. At present, the carrying capacity is increasingly exceeded, and reinforced settlement of nomads threatens this ecosystem especially in its drier part, where small mammals become strong competitors with livestock and the removal of the turf is irreversible. Examples of rehabilitation measures are given.
Lateglacial buried soil horizons, which occur widely in sandy aeolian sequences of northern central Europe, were analysed in order to evaluate their regional pedostratigraphical and palaeoenvironmental potential. Data on stratigraphy, sedimentology, pedology, geochronology and palaeobotany from 29 palaeosol‐bearing profiles at terrestrial sites are presented. Greyish Ahb and Eb horizons occur, as well as brownish Bwb and BwAhb horizons. They are 5–30 cm thick, showing similar pedological properties except colour, and they frequently bear charcoal typically from pine. Soil classification results in Albic Arenosols (Dystric) and Brunic Arenosols (Dystric) representing palaeosols of the Usselo and Finow types, respectively. Radiocarbon dating of the palaeosols reveals a dominance of Allerød ages followed by Younger Dryas and Preboreal ages. Most luminescence ages on overlying aeolian sands date into the Allerød–Younger Dryas interval. Mapping of all Usselo and Finow soil occurrences (n=96) in northern central Europe known so far reveals a nearly closed Finow soil province between Usselo soil areas in NW Germany and central Poland, mainly situated in NE Germany. Most Usselo soils compiled contain charcoal, indicating widespread and repeated fires. Recent claims that the Usselo soil represents an event layer from rapid aeolian sedimentation caused by an extraterrestrial impact is rejected. Instead, both Usselo and Finow soils can be assumed to be pedostratigraphical marker horizons in northern central Europe and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.