The lattice Boltzmann method is a simulation technique in computational fluid dynamics. In its standard formulation, it is restricted to regular computation grids, second-order spatial accuracy, and a unity Courant-Friedrichs-Lewy (CFL) number. This paper advances the standard lattice Boltzmann method by introducing a semi-Lagrangian streaming step. The proposed method allows significantly larger time steps, unstructured grids, and higher-order accurate representations of the solution to be used. The appealing properties of the approach are demonstrated in simulations of a two-dimensional Taylor-Green vortex, doubly periodic shear layers, and a three-dimensional Taylor-Green vortex.
Summary
This paper presents a framework for incorporating arbitrary implicit multistep schemes into the lattice Boltzmann method. While the temporal discretization of the lattice Boltzmann equation is usually derived using a second‐order trapezoidal rule, it appears natural to augment the time discretization by using multistep methods. The effect of incorporating multistep methods into the lattice Boltzmann method is studied in terms of accuracy and stability. Numerical tests for the third‐order accurate Adams‐Moulton method and the second‐order backward differentiation formula show that the temporal order of the method can be increased when the stability properties of multistep methods are considered in accordance with the second Dahlquist barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.