The structure and properties of two new UiO-67-type metal-organic frameworks, along with their linker synthesis and powder and single crystal synthesis, are presented. The new MOFs, UiO-67-Me and UiO-67-BN, are based on 3,3'-dimethylbiphenyl and 1,1'-binaphthyl linker scaffolds, and show a much higher stability to water than the thoroughly investigated UiO-67, which is based on the biphenyl scaffold. On the basis of structure models obtained from single crystal X-ray diffraction, it is seen that these linkers are partly shielding the Zr cluster. The new materials have higher density than UiO-67, but show a higher volumetric adsorption capacity for methane. UiO-67-BN exhibits excellent reversible water sorption properties, and enhanced stability to aqueous solutions over a wide pH range; it is to the best of our knowledge the most stable Zr-MOF that is isostructural to UiO-67 in aqueous solutions.
A (N,CAr,CAlk) Au(iii) pincer complex has been synthesized from Au(OAc)3 (OAc = OCOCH3) and 2-(3,5-di-tert-butylphenyl)pyridine (L1) involving a Csp3-H bond activation by electrophilic substitution. In agreement with DFT calculations, the resulting complex significantly improves the performance of Au(tpy)(OAcF)2 (tpy = 2-(p-tolyl)pyridine, OAcF = OCOCF3) in the catalytic trifluoroacetylation of acetylene.
Zn complexes of Schiff base ligands derived from 2,2′-diaminobiphenyls and salicylaldehyde derivatives were synthesized and characterized by NMR and single-crystal X-ray diffraction analysis. The detailed NMR studies suggest that the Zn complexes have a complicated behavior in solution, which is strongly dependent on the donating ability of the solvent, the steric properties of the ligand, as well as the concentration of the complex in the solvent. All these factors are decisive for the determination of the coordination number of the complex [a] K.
Cyclometalated Au(III) complexes are of interest due to their catalytic, medicinal, and photophysical properties. Herein, we describe the synthesis of derivatives of the type (N,C)Au(OAcF)2 (OAcF = trifluoroacetate) and (N,C,C)AuOAcF...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.