Circadian clocks regulate daily fluctuations of many physiological and behavioral aspects in life. They are synchronized with the environment via light or temperature cycles [1]. Natural fluctuations of the day length (photoperiod) and temperature necessitate a daily reset of the circadian clock on the molecular level. In Drosophila, the blue-light photoreceptor Cryptochrome (Cry) mediates a rapid light-dependent degradation of the clock protein Timeless (Tim) via the F box protein Jetlag (Jet) and the proteasome, which initiates the resetting of the molecular clock [2, 3]. Cry is also degraded in the light but whereas the degradation of Tim is well characterized [4-8], the mechanism for light-dependent degradation of Cry is mostly unknown. Until now it was believed that these two degradation pathways are distinct [4, 9]. Here we reveal that Jetlag also interacts with Cry in a light-dependent manner. After illumination, Jetlag induces massive degradation of Cry, which can be prevented in vitro and in vivo by adding Tim as an antagonist. We show that the affinity of Tim for Cry and Jetlag determines the sequential order of Tim and Cry degradation and thus reveal an intimate connection between the light-dependent degradation of these two proteins by the same proteasomal pathway.
The switch of cellular metabolism from mitochondrial respiration to glycolysis is the hallmark of cancer cells and associated with tumor malignancy. However, the mechanism of this metabolic switch remains largely unknown. Herein, we reported that hypoxia-inducible factor-1 (HIF-1) induced pyruvate dehydrogenase kinase-3 (PDK3) expression leading to inhibition of mitochondrial respiration. Promoter activity assay, small interference RNA knockdown assay, and chromatin immunoprecipitation assay demonstrated that hypoxia-induced PDK3 gene activity was regulated by HIF-1 at the transcriptional level. Forced expression of PDK3 in cancer cells resulted in increased lactic acid accumulation and drugs resistance, whereas knocking down PDK3 inhibited hypoxia-induced cytoplasmic glycolysis and cell survival. These data demonstrated that increased PDK3 expression due to elevated HIF-1␣ in cancer cells may play critical roles in metabolic switch during cancer progression and chemoresistance in cancer therapy.
Highlights d Drosophila DN1p clock neurons innervate the anterior optic tubercle (AOTU) d A subset of tubercular-bulbar (TuBu) neurons in the AOTU is inhibited by DN1p neurons d These TuBu neurons promote consolidated sleep during the day d Ellipsoid body ring neurons are downstream of sleepregulatory TuBu neurons
Elevated expression of leptin in endometriotic tissue results in an increase in stromal cell proliferation and may contribute to the development of endometriosis. However, the underlying mechanism responsible for aberrant expression of leptin is not known. We hypothesize that aberrant expression of leptin in endometriotic stroma may be regulated by increased levels of hypoxia-inducible factor-1alpha (HIF-1alpha), the master transcription factor that controls gene expression in response to hypoxia. Herein we show that the mRNA and protein levels of HIF-1alpha were greater in ectopic endometriotic tissue compared with its eutopic counterpart. Exposure of eutopic endometrial stromal cells under hypoxic conditions or treated with desferrioxamine (DFO, chemical hypoxia) resulted in a time-dependent increase in leptin gene expression. A promoter activity assay demonstrated that HIF-1alpha induced leptin promoter activity after DFO treatment. Chromatin immunoprecipitation assay further demonstrated that binding of HIF-1alpha to leptin promoter was evident after DFO treatment. Finally, depletion of HIF-1alpha by short interference RNA abolished leptin expression in ectopic endometriotic stromal cells. Taken together, our data demonstrate that aberrant expression of leptin in ectopic endometriotic stromal cells is induced, at least in part, by an elevated level of HIF-1alpha in these cells, providing new insights into the etiology of endometriosis.
We have characterized a light-input pathway regulating Drosophila clock neuron excitability. The molecular clock drives rhythmic electrical excitability of clock neurons, and we show that the recently discovered light-input factor Quasimodo (Qsm) regulates this variation, presumably via an Na A ll organisms are subject to predictable but drastic daily environmental changes caused by the earth's rotation around the sun. It is critical for the fitness and well-being of an individual to anticipate these changes, and this anticipation is done by circadian timekeeping systems (clocks). These regulate changes in behavior, physiology, and metabolism to ensure they occur at certain times during the day, thereby adapting the organism to its environment (1). The circadian system consists of three elements: the circadian clock to keep time, inputs that allow entrainment, and outputs that influence physiology and behavior (2). Like a normal clock, circadian clocks run at a steady pace (24 h) and can be reset. In nature this environmental synchronization is done via daily light and temperature cycles, food intake, and social interactions (3).In Drosophila the central clock comprises 75 neuron pairs grouped into identifiable clusters that subserve different circadian functions (Fig. 1A). The molecular basis of the circadian clock is remarkably conserved from Drosophila to mammals (4). This intracellular molecular clock drives clock neurons to express circadian rhythms in electrical excitability, including variation in membrane potential and spike firing. Clock neurons are depolarized and fire more during the day than at night, and circadian changes in the expression of clock-controlled genes encoding membrane proteins such as ion channels and transporters likely contribute to these rhythms (5-8). Such cyclical variations in activity play a critical role in synchronizing different clock neurons and conveying circadian signals to other parts of the nervous system and body (9, 10). Furthermore, they provide positive feedback to the molecular clock, which can dampen rapidly without such feedback (7,11,12).Light resets the circadian clock every morning to synchronize the clock to the environment via Timeless (Tim) degradation after activation of the blue-light photoreceptor Cryptochrome (Cry), Quasimodo (Qsm), and potentially also visual photoreceptors (13-17). Qsm acts either independently or downstream of Cry and also is able to affect clock protein stability in Qsmnegative neurons by an unknown non-cell-autonomous mechanism (16). Recently Cry has been shown to regulate clock neuron excitability via the redox sensor of the Hyperkinetic voltage-gated potassium (K V )-β subunit (Hk) (18,19), and here we ask if Qsm affects the clock neurons in a similar way.Membrane potential is important for control of circadian behavior, and manipulation of Shaw and the Narrow Abdomen (NA) channels, both of which are expressed and function within clock neurons influence neuronal electrical activity, the circadian clock, and clockcontrolled behavi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.