Focused Ultrasound (FUS) in combination with gaseous microbubbles has emerged as a potential new means of effective drug delivery to the brain. Recent research has shown that, under burst-type energy exposure with the presence of microbubbles, this modality can transiently permeate the blood-brain barrier (BBB). The bioavailability of therapeutic agents is site-specifically augmented only in the zone where the FUS energy is targeted. The non-invasiveness of this approach makes FUS-induced BBB opening a novel and attractive means to perform localized CNS therapeutic agent delivery. Over the past decade, FUS-BBB opening has been preclinically confirmed to successfully enhance CNS penetration of therapeutic agents including chemotherapeutic agents, therapeutic peptides, monoclonal antibodies, and nanoparticles. Recently, a number of clinical human trials have begun to explore clinical utility. This review article, explores this technology through its physical mechanisms, summarizes the existing preclinical findings (including current medical device designs and technical approaches), and summarizes current ongoing clinical trials.
Focused ultrasound (FUS) in the presence of microbubbles can transiently open the blood-brain barrier (BBB) to increase therapeutic agent penetration at the targeted brain site to benefit recurrent glioblastoma (rGBM) treatment. This study is a dose-escalating pilot trial using a device combining neuronavigation and a manually operated frameless FUS system to treat rGBM patients. The safety and feasibility were established, while a dose-dependent BBB-opening effect was observed, which reverted to baseline within 24 hours after treatment. No immunological response was observed clinically under the applied FUS level in humans; however, selecting a higher level in animals resulted in prolonged immunostimulation, as confirmed preclinically by the recruitment of lymphocytes into the tumor microenvironment (TME) in a rat glioma model. Our findings provide preliminary evidence of FUS-induced immune modulation as an additional therapeutic benefit by converting the immunosuppressive TME into an immunostimulatory TME via a higher but safe FUS dosage.
Background: Blood-brain barrier (BBB) limits over 95% of drugs' penetration into brain, which has been a major obstacle in treating patients with glioblastoma. Transient BBB opening in glioblastoma (GBM) is feasible by combining focused ultrasound (FUS) with systemic infusion of microbubbles (MB). NaviFUS, a novel device that integrates neuronavigation and FUS-MB system, is able to intraoperatively direct the ultrasound energy precisely and repeatedly at targeted CNS areas. This clinical trial evaluates the safety and feasibility of NaviFUS in recurrent glioblastoma patients.
Methods:The study is a first-in-human, prospective, open-label, single-center, single-arm, dose escalation phase 1 clinical trial. A total of 6 patients will be enrolled. Patients will be enrolled into three groups, each group receiving an escalating dose of FUS energy (acoustic power is 4, 8, and 12 W) with concomitant systemic microbubbles (0.1 mL/kg) applied 1 week before surgical resection.Results: Dynamic contrast-enhanced MRI will be obtained immediately and 24 hours after FUS procedures, while heavily T2-weighted sequence will be obtained to evaluate for any micro-hemorrhages. We anticipate that there will be minimal side effects associated with NaviFUS-mediated transient BBB opening.Conclusions: Obtained results will support a planned phase 2 trial to evaluate whether NaviFUS can effectively enhance the delivery of chemotherapeutic agents and improve tumor control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.