Image recognition has been applied to many fields, but it is relatively rarely applied to medical images. Recent significant deep learning progress for image recognition has raised strong research interest in medical image recognition. First of all, we found the prediction result using the VGG16 model on failed pneumonia X-ray images. Thus, this paper proposes IVGG13 (Improved Visual Geometry Group-13), a modified VGG16 model for classification pneumonia X-rays images. Open-source thoracic X-ray images acquired from the Kaggle platform were employed for pneumonia recognition, but only a few data were obtained, and datasets were unbalanced after classification, either of which can result in extremely poor recognition from trained neural network models. Therefore, we applied augmentation pre-processing to compensate for low data volume and poorly balanced datasets. The original datasets without data augmentation were trained using the proposed and some well-known convolutional neural networks, such as LeNet AlexNet, GoogLeNet and VGG16. In the experimental results, the recognition rates and other evaluation criteria, such as precision, recall and f-measure, were evaluated for each model. This process was repeated for augmented and balanced datasets, with greatly improved metrics such as precision, recall and F1-measure. The proposed IVGG13 model produced superior outcomes with the F1-measure compared with the current best practice convolutional neural networks for medical image recognition, confirming data augmentation effectively improved model accuracy.
Particle swarm optimization (PSO) is the most well known of the swarm-based intelligence algorithms and is inspired by the social behavior of bird flocking. However, the PSO algorithm converges prematurely, which rapidly decreases the population diversity, especially when approaching local optima. Recently, a new metaheuristic algorithm called the crow search algorithm (CSA) was proposed. The CSA is similar to the PSO algorithm but is based on the intelligent behavior of crows. The main concept behind the CSA is that crows store excess food in hiding places and retrieve it when needed. The primary advantage of the CSA is that it is rather simple, having just two parameters: flight length and awareness probability. Thus, the CSA can be applied to optimization problems very easily. This paper proposes a hybridization algorithm based on the PSO algorithm and CSA, known as the crow particle optimization (CPO) algorithm. The two main operators are the exchange and local search operators. It also implements a local search operator to enhance the quality of the best solutions from the two systems. Simulation results demonstrated that the CPO algorithm exhibits a significantly higher performance in terms of both fitness value and computation time compared to other algorithms.
The permutation flow shop scheduling problem (PFSP) is a renowned problem in the scheduling research community. It is an NP-hard combinatorial optimization problem that has useful real-world applications. In this problem, finding a useful algorithm to handle the massive amounts of jobs required to retrieve an actionable permutation order in a reasonable amount of time is important. The recently developed crow search algorithm (CSA) is a novel swarm-based metaheuristic algorithm originally proposed to solve mathematical optimization problems. In this paper, a hybrid CSA (HCSA) is proposed to minimize the makespans of PFSPs. First, to make the CSA suitable for solving the PFSP, the smallest position value rule is applied to convert continuous numbers into job sequences. Then, the HCSA uses a Nawaz–Enscore–Ham (NEH) technique to create a population with the required levels of quality and diversity. We apply a local search to enhance the quality of the solutions and avoid premature convergence; simulated annealing enhances the local search of a method based on a variable neighborhood search. Computational tests are used to evaluate the algorithm using PFSP benchmarks with job sizes between 20 and 500. The tests indicate that the performance of the proposed HCSA is significantly superior to that of other algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.