Recent theories emphasize the dynamic aspects of emotions. However, the physiological measures and the methodological approaches that can capture the dynamics of emotions are underdeveloped. In the current study, we investigated whether moment-to-moment changes in autonomic nervous system (ANS) activity are reliably associated with the unfolding of emotional experience. We obtained cardiovascular and electrodermal signals from participants while they viewed emotional movies. We found that the ANS signals were temporally aligned across individuals, indicating a reliable stimulus-driven response. The degree of response reliability was associated with the emotional time line of the movie. Finally, individual differences in ANS response reliability were strongly correlated with the subjective emotional responses. The current research offers a methodological approach for studying physiological responses during dynamic emotional situations.
The continuous wavelet transform (CWT) is specifically efficient in the analysis of transient and non-stationary signals. As such, it has become a powerful candidate for time-frequency analysis of cardiovascular variability. CWT has already been established as a valid tool for the analysis of single cardiovascular signals, providing additional insights into the autonomous nervous system (ANS) activity and its control mechanism. Intercorrelation between cardiovascular signals elucidates the function of ANS central control and the peripheral reflex mechanisms. Wavelet transform coherence (WTC) can provide insight into the transient linear order of the regulatory mechanisms, via the computation of time-frequency maps of the time-variant coherence. This paper presents a framework for applying WTC for quantitative analysis of coherence in cardiovascular variability research. Computer simulations were performed to estimate the accuracy of the WTC estimates and a method for determining the coherence threshold for specific frequency band was developed and evaluated. Finally, we demonstrated, in two representative situations, the dynamic behaviour of respiration sinus arrhythmia through the analysis of the WTC between heart rate and respiration signals. This emphasizes that CWT and its application to WTC is a useful tool for dynamic analysis of cardiovascular variability.
A novel approach for the estimation of baroreflex sensitivity (BRS) is introduced based on time-frequency analysis of the transfer function (TF). The TF method (TF-BRS) is a well-established non-invasive technique which assumes stationarity. This condition is difficult to meet, especially in cardiac patients. In this study, the classical TF was replaced with a wavelet transfer function (WTF) and the classical coherence was replaced with wavelet transform coherence (WTC), adding the time domain as an additional degree of freedom with dynamic error estimation. Error analysis and comparison between WTF-BRS and TF-BRS were performed using simulated signals with known transfer function and added noise. Similar comparisons were performed for ECG and blood pressure signals, in the supine position, of 19 normal subjects, 44 patients with a history of previous myocardial infarction (MI) and 45 patients with chronic heart failure. This yielded an excellent linear association (R > 0.94, p < 0.001) for time-averaged WTF-BRS, validating the new method as consistent with a known method. The additional advantage of dynamic analysis of coherence and TF estimates was illustrated in two physiological examples of supine rest and change of posture showing the evolution of BRS synchronized with its error estimations and sympathovagal balance.
Wavelet transform coherence (WTC) can provide insight into the transient linear order of the regulatory mechanisms, via the computation of time-frequency maps of the time-variant coherence. This paper presents a framework for applying WTC for quantitative analysis of coherence in cardiovascular variability research.Computer simulations were performed to estimate the accuracy of the WTC estimates and a method for determining the coherence threshold for specific frequency band was developed and evaluated. Finally, we demonstrated, in two representative situations, the dynamic behavior of RSA through the analysis of the WTC between HR and respiration signals. This emphasizes that continuous wavelet transform (CWT) and its application to WTC is a useful tool for dynamic analysis of cardiovascular variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.