Radar data assimilation has been operational at the Deutscher Wetterdienst for several years and is essential for generating accurate precipitation forecasts. The current work attempts to further enhance the radar data assimilation by improving the latent heat nudging (LHN) scheme and by reducing the observation error (OE) caused by the representation error of the efficient modular volume radar operator (EMVORADO). First of all, a series of hindcasts for a one-month convective period over Germany are performed. Compared with radar reflectivity and satellite observations, it is found that the LHN scheme that implicitly adjusts temperature performs better, and the beam broadening effect and the choice of the scattering schemes in EMVORADO are important. Moreover, the Mie scheme with the new parameterization to reduce the brightband effect not only proves to be the best in hindcasts but also that it results in the smallest standard deviations and the shortest horizontal correlation length scales of the OE in data assimilation experiments.
<p>The SINFONY project at Deutscher Wetterdienst (DWD) aims to produce seamless precipitation forecast products from minutes up to 12 hours, with particular focus on convective events. While the near future predictions are typically from nowcasting procedures using radar data, the numerical weather prediction (NWP) aims at longer time scales. The lead-time in the latest available forecast is usually too long for merging both the nowcasting and NWP output to produce reliable seamless predictions.</p><p>At DWD, the current forecasts are produced by the short range numerical weather prediction (SRNWP) <span>making use of a</span> continuous assimilation cycle with relatively long cutoff times and using 1-moment microphysics. In order to reduce the differences in the precipitation to the <span>nowcasting </span>on the NWP side, we use two different approaches. First, we reduce the lead-time from the model start by running 1-hourly forecasts based on an assimilation cycle with shorter data cutoff. Secondly, we use new observational systems in the assimilation cycle, such as radar or satellite data to capture and represent strong convective activity. This procedure is called Rapid Update Cycle (RUC). As an additional measure, we introduce a 2-Moment microphysics scheme into the numerical model, resulting in a better representation of the radar reflectivities. In order to keep the model state similar to that of the SRNWP, the RUC is a time limited assimilation cycle starting from forecasts of the SRNWP at pre-defined times.</p><p>The introduction of the 2-Moment scheme leads to a spin-up affecting both the assimilation cycle and the short forecasts. The resulting effects are analysed by comparison with the corresponding assimilation cycle using the 1-Moment scheme. As a complementary approach for the analysis, the routine cycle is run with the 2-Moment scheme. The forecast quality is used as a measure to compare the results with respect to precipitation and additional observed parameters. It is shown in how far the resulting improvements are related to the assimilation and momentum scheme, or to the higher frequency of forecasts.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.