Engineered 3D neuronal networks are considered a promising approach for repairing the damaged spinal cord. However, the lack of a technological platform encouraging axonal elongation over branching may jeopardize the success of such treatment. To address this issue we have decorated gold nanoparticles on the surface of electrospun nanofiber scaffolds, characterized the composite material, and investigated their effect on the differentiation, maturation, and morphogenesis of primary neurons and on an immature neuronal cell line. We have shown that the nanocomposite scaffolds have encouraged a longer outgrowth of the neurites, as judged by the total length of the branching trees and the length and total distance of neurites. Moreover, neurons grown on the nanocomposite scaffolds had less neurites originating out of the soma and lower number of branches. Taken together, these results indicate that neurons cultivated on the gold nanoparticle scaffolds prefer axonal elongation over forming complex branching trees. We envision that such cellular constructs may be useful in the future as implantable cellular devices for repairing damaged neuronal tissues, such as the spinal cord.
BackgroundThe ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells.ResultsWe found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration.ConclusionsApplying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.Electronic supplementary materialThe online version of this article (doi:10.1186/s12951-016-0190-0) contains supplementary material, which is available to authorized users.
BackgroundDuring the last decade nanoparticles have gained attention as promising drug delivery agents that can transport through the blood brain barrier. Recently, several studies have demonstrated that specifically targeted nanoparticles which carry a large payload of therapeutic agents can effectively enhance therapeutic agent delivery to the brain. However, it is difficult to draw definite design principles across these studies, owing to the differences in material, size, shape and targeting agents of the nanoparticles. Therefore, the main objective of this study is to develop general design principles that link the size of the nanoparticle with the probability to cross the blood brain barrier. Specifically, we investigate the effect of the nanoparticle size on the probability of barbiturate coated GNPs to cross the blood brain barrier by using bEnd.3 brain endothelial cells as an in vitro blood brain barrier model.ResultsThe results show that GNPs of size 70 nm are optimal for the maximum amount of gold within the brain cells, and that 20 nm GNPs are the optimal size for maximum free surface area.ConclusionsThese findings can help understand the effect of particle size on the ability to cross the blood brain barrier through the endothelial cell model, and design nanoparticles for brain imaging/therapy contrast agents.
Nerve growth strongly relies on multiple chemical and physical signals throughout development and regeneration. Currently, a cure for injured neuronal tissue is an unmet need. Recent advances in fabrication technologies and materials led to the development of synthetic interfaces for neurons. Such engineered platforms that come in 2D and 3D forms can mimic the native extracellular environment and create a deeper understanding of neuronal growth mechanisms, and ultimately advance the development of potential therapies for neuronal regeneration. This progress report aims to present a comprehensive discussion of this field, focusing on physical feature design and fabrication with additional information about considerations of chemical modifications. We review studies of platforms generated with a range of topographies, from micro-scale features down to topographical elements at the nanoscale that demonstrate effective interactions with neuronal cells. Fabrication methods are discussed as well as their biological outcomes. This report highlights the interplay between neuronal systems and the important roles played by topography on neuronal differentiation, outgrowth, and development. The influence of substrate structures on different neuronal cells and parameters including cell fate, outgrowth, intracellular remodeling, gene expression and activity is discussed. Matching these effects to specific needs may lead to the emergence of clinical solutions for patients suffering from neuronal injuries or brain-machine interface (BMI) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.