The correlation between glioma grade and angiogenesis suggests that antiangiogenic therapies are potentially therapeutically effective for these tumors. However, to achieve tumor suppression, antiangiogenic therapies need to be administered daily using high systemic quantities. We designed a biodegradable polymeric device that overcomes those barriers by providing sustained local delivery of a C-terminal fragment of platelet factor 4 (PF-4/CTF), an antiangiogenic agent. Fluorescent-labeled microspheres composed of poly lactic-coglycolic acid (PLGA) were loaded with rhodamine-labeled PF-4/CTF and formulated to release their contents over time. Fluorescent labeling enabled the correlation between the in vitro to the in vivo kinetic and release studies. PF-4/CTF microspheres were injected into established intracranial human glioma tumors in nude mice. Noninvasive magnetic resonance imaging (MRI) was used to assess the therapeutic response. Tumor size, microvessel density, proliferation, and apoptosis rate were measured by histological analysis. Intracranially, the microspheres were located throughout the tumor bed and continuously released PF-4/CTF during the entire experimental period. MRI and histological studies showed that a single injection of microspheres containing PF-4/CTF caused a 65.2% and 72% reduction in tumor volume, respectively, with a significant decrease in angiogenesis and an increase in apoptosis. Our data demonstrate that polymeric microspheres are an effective therapeutic approach for delivering antiangiogenic agents that result in the inhibition of glioma tumor growth.
When designing a nonviral gene delivery system based on polymeric nanoparticles (NPs), it is important to keep in mind obstacles associated with future clinical applications. Simplifying the procedure of NPs production and taking toxicity into account are the most important issues that need to be addressed. Toxicity concerns in clinical trials may be raised when using additives such as cationic polymers/lipids, buffering reagents, and proteins. Therefore, the aim of this study was to simplify the formulation of poly (lactide-co-glycolide) acid NPs by shortening steps such as sonication time and by avoiding the use of additives while preserving its efficiency. NPs (300 nm) were formulated using a modified w/o/w technique with DNA entrapment efficiency of 80%. Once achieving such NPs, formulation parameters such as DNA loading, release kinetics, DNA integrity and bioactivity, uptake by cells, and toxicity were addressed. The NPs were readily taken by several cell lines and were localized mostly in their endo-lysosomal compartments. The NPs did not affect cells viability. Most importantly, transfection studies in COS-7 and Cf2th cells resulted with a 250-fold protein expression levels when compared with the control. These expression levels are higher than ones achieved with more complicated NPs systems, demonstrating the efficiency of our simplified NPs for gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.