Laser nitridation of a pure iron (Fe) surface was conducted using a focused pulsed Nd:YAG laser under a nitrogen atmosphere, and the effects of nitrogen gas pressure, laser power, and repetition number of laser shots on the surface characteristics were analyzed using XPS. The laser‐irradiated surface consisted of the topmost surface layer of Fe oxynitride (FeOxNy) and the underlayer beneath, which mainly comprised Fe nitride (Fe4N). The topmost surface layer is a post‐formed layer due to the oxidation of the nitride layer. The thickness of the underlayer corresponding to the original nitride layer drastically increased under nitrogen gas at atmospheric pressure. Increasing the repetition number of laser shots enhanced layer thickness up to 5 shots, after which no change was observed. Moreover, the layer thickness increased monotonically with increasing laser power. Nitridation through pulsed laser irradiation was likely predominated by the melting and resolidification of a specific surface area, as well as the convection of nitrogen therein. Thickness variation under various conditions can be explained appropriately using this assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.