Gene expression analyses of postmortem cerebral cortex suggest that transcription of the regulator of G-protein signaling 4 (RGS4) is decreased in a diagnosis-specific manner in subjects with schizophrenia. To evaluate the possible role of RGS4 in the pathogenesis of schizophrenia, we conducted genetic association and linkage studies using samples ascertained independently in Pittsburgh and New Delhi and by the NIMH Collaborative Genetics Initiative. Using the transmission disequilibrium test, significant transmission distortion was observed in the Pittsburgh and NIMH samples. Among single-nucleotide polymorphisms (SNPs) spanning approximately 300 kb, significant associations involved four SNPs localized to a 10 kb region at RGS4, but the associated haplotypes differed. A trend for transmission distortion was also present in the Indian sample for haplotypes incorporating the same SNPs. Consistent with the linkage/association observed from the family-based tests, samples with affected siblings (NIMH, India) showed higher levels of allele sharing, identical by descent, at RGS4. When the US patients were contrasted to two population-based control samples, however, no significant differences were observed. To check the specificity of the transmission bias, we therefore examined US families with bipolar I disorder (BD1) probands. This sample also showed a trend for transmission distortion, and differed significantly from the population-based controls for the four-SNP haplotypes tested in the other samples. The transmission distortion is unlikely to be due to chance, but its mechanism and specificity require further study. Our results illustrate the potential power of combining gene expression profiling and genomic analyses to identify susceptibility genes for genetically complex disorders.
We hypothesize that circadian dysfunction could underlie, at least partially, the liability for bipolar 1 disorder (BD1). Our hypothesis motivated tests for the association between the polymorphisms of genes that mediate circadian function and liability for BD1. The US Caucasian patients with BD1 (DSM-IV criteria) and available parents were recruited from Pittsburgh and surrounding areas (n = 138 cases, 196 parents) and also selected from the NIMH Genetics Collaborative Initiative (n = 96 cases, 192 parents). We assayed 44 informative single-nucleotide polymorphisms (SNPs) from eight circadian genes in the BD1 samples. A population-based sample, specifically cord blood samples from local live births, served as community-based controls (n = 180). It was used as a contrast for genotype and haplotype distributions with those of patients. US patients with schizophrenia/schizoaffective disorder (SZ/SZA, n = 331) and available parents from Pittsburgh (n = 344) were assayed for a smaller set of SNPs based on the results from the BD1 samples. Modest associations with SNPs at ARNTL (BmaL1) and TIMELESS genes were observed in the BD1 samples. The associations were detected using family-based and case-control analyses, albeit with different SNPs. Associations with TIMELESS and PERIOD3 were also detected in the Pittsburgh SZ/SZA group. Thus far, evidence for association between specific SNPs at the circadian gene loci and BD1 is tentative. Additional studies using larger samples are required to evaluate the associations reported here.
We evaluated the hypothesis that dopaminergic polymorphisms are risk factors for schizophrenia (SZ). In stage I, we screened 18 dopamine-related genes in two independent US Caucasian samples: 150 trios and 328 cases/501 controls. The most promising associations were detected with SLC6A3 (alias DAT), DRD3, COMT and SLC18A2 (alias VMAT2). In stage II, we comprehensively evaluated these four genes by genotyping 68 SNPs in all 478 cases and 501 controls from stage I. Fifteen (23.1%) significant associations were found (p < or = 0.05). We sought epistasis between pairs of SNPs providing evidence of a main effect and observed 17 significant interactions (169 tests); 41.2% of significant interactions involved rs3756450 (5' near promoter) or rs464049 (intron 4) at SLC6A3. In stage III, we confirmed our findings by genotyping 65 SNPs among 659 Bulgarian trios. Both SLC6A3 variants implicated in the US interactions were overtransmitted in this cohort (rs3756450, p = 0.035; rs464049, p = 0.011). Joint analyses from stages II and III identified associations at all four genes (p(joint) < 0.05). We tested 29 putative interactions from stage II and detected replication between seven locus pairs (p < or = 0.05). Simulations suggested our stage II and stage III interaction results were unlikely to have occurred by chance (p = 0.008 and 0.001, respectively). In stage IV we evaluated rs464049 and rs3756450 for functional effects and found significant allele-specific differences at rs3756450 using electrophoretic mobility shift assays and dual-luciferase promoter assays. Our data suggest that a network of dopaminergic polymorphisms increase risk for SZ.
Gene expression analyses of postmortem cerebral cortex suggest that transcription of the regulator of G-protein signaling 4 (RGS4) is decreased in a diagnosis-specific manner in subjects with schizophrenia. To evaluate the possible role of RGS4 in the pathogenesis of schizophrenia, we conducted genetic association and linkage studies using samples ascertained independently in Pittsburgh and New Delhi and by the NIMH Collaborative Genetics Initiative. Using the transmission disequilibrium test, significant transmission distortion was observed in the Pittsburgh and NIMH samples. Among single-nucleotide polymorphisms (SNPs) spanning approximately 300 kb, significant associations involved four SNPs localized to a 10 kb region at RGS4, but the associated haplotypes differed. A trend for transmission distortion was also present in the Indian sample for haplotypes incorporating the same SNPs. Consistent with the linkage/association observed from the family-based tests, samples with affected siblings (NIMH, India) showed higher levels of allele sharing, identical by descent, at RGS4. When the US patients were contrasted to two population-based control samples, however, no significant differences were observed. To check the specificity of the transmission bias, we therefore examined US families with bipolar I disorder (BD1) probands. This sample also showed a trend for transmission distortion, and differed significantly from the population-based controls for the four-SNP haplotypes tested in the other samples. The transmission distortion is unlikely to be due to chance, but its mechanism and specificity require further study. Our results illustrate the potential power of combining gene expression profiling and genomic analyses to identify susceptibility genes for genetically complex disorders.
Transgenic mice lacking the nuclear orphan transcription factor Nur-related receptor 1 (Nurr1) fail to develop mesencephalic dopamine neurons. There is a highly homologous NURR1 gene in humans (formerly known as NOT) which therefore constitutes a good candidate gene for neurologic and psychiatric disorders with an involvement of the dopamine neuron system, such as Parkinson's disease, schizophrenia, and manic-depression. By direct sequencing of genomic DNA, we found two different missense mutations in the third exon of NURR1 in two schizophrenic patients and another missense mutation in the same exon in an individual with manic-depressive disorder. All three mutations caused a similar reduction of in vitro transcriptional activity of NURR1 dimers of about 30-40%. Neither of these amino acid changes, nor any sequence changes whatsoever, were found in patients with Parkinson's disease or control DNA material of normal populations. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:808-813, 2000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.