Concrete made with geopolymer technology is thought to be both pro-ecological and minimal cost-effective. Geopolymer concrete manufacture aids in the conversion of industrial by-product materials into reusable products. Geopolymer concrete outperforms OPC concrete in terms of strength. The ternary blended high-molarities (12M) geopolymer concrete used in this experiment was made of red mud (RM), fly ash (FA), and Ground granulated blast furnace slag (GGBFS). The current study intended to establish the best ratio of RM - FA - GGBFS -based ternary geopolymer concrete. The compressive strength, split tensile strength, and flexural strength tests were performed to determine the strength properties and water absorption, permeability, and sorptivity tests determined the durability characteristics. The results showes that the proportions of RM-based ternary GPC with RM: FA:GGBFS in 45:35:20 ratio resulted in a significant increase in the synthesis. This resulting in improved mechanical and microstructural properties than the other proportions. Higher results were also seen at the aforementioned ratio in the chemical analysis performed on the ternary-based geopolymer paste to determine the maximum pH value. The study's findings are encouraging sustainable and cost-effective routes for dealing with the industrial by-products that are presently produced in multiple regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.