Interferon-gamma (INF-gamma) has been shown to suppress erythropoiesis and perhaps to contribute to the anemia of chronic disease. In this study we demonstrated that the concentration of INF gamma required to suppress murine burst forming unit-erythroid (BFU-E) growth was significantly less than that required to suppress colony forming unit-erythroid (CFU-E) growth. INF gamma acted at the most primitive step in erythroid progenitor cell differentiation and proliferation, as inhibition was maximal when added at the time of BFU-E culture initiation. Inhibition was progressively less if INF gamma addition was delayed after culture initiation. The effects of INF gamma on BFU-E did not require the presence of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF alpha), or granulocyte macrophage colony stimulating factor (GM-CSF), as its effects were not neutralized by monoclonal antibodies against IL-1 alpha, TNF alpha, or GM-CSF. This applied whether INF gamma was added to culture with individual antibodies or with a combination of all three antibodies. INF gamma was not required for IL-1 alpha- or TNF alpha-induced suppression of BFU-E, as their effects were not neutralized by a monoclonal anti-INF gamma antibody. In contrast, GM-CSF-induced suppression of BFU-E was negated by the simultaneous addition of anti-INF gamma. We have previously shown that the addition of TNF alpha does not suppress BFU-E growth in cultures from marrow depleted of macrophages. Suppression did occur, however, if a small concentration of INF gamma that does not inhibit and increasing concentration of TNF alpha were added to culture, suggesting a synergistic effect between INF-gamma and TNF alpha. These observations suggest that INF gamma is a potent direct inhibitor of erythroid colony growth in vitro. It exerts its negative regulatory effect primarily on the earliest stages of erythroid progenitor cell differentiation and proliferation, as much higher doses are required to suppress late erythroid cell development. INF gamma is also involved in GM-CSF-induced inhibition of BFU-E colony growth.
Epidemiological evidence strongly suggests an association between cigarette smoking and pancreatic diseases. It is well recognized that nicotine, a major component in cigarette smoke, is an addictive agent and, therefore, reinforces smoking behavior. The current review update focuses on the genetics of nicotine dependence and its role on the development of pancreatic diseases. The role of smoking and nicotine in pancreatitis and pancreatic cancer development is also discussed. Exposure of laboratory animals to nicotine clearly supports the notion that nicotine can induce pancreatic injury. The mechanism by which nicotine induces such effects is perhaps mediated via signal transduction pathways in the pancreatic acinar cell, leading to enhanced levels of intracellular calcium release, resulting in cytotoxicity and eventual cell death. The induction of pancreatic injury by nicotine may also involve activation and expression of protooncogene, H-ras, which can increase cytosolic calcium via second messenger pathways. Development of pancreatic carcinoma in cigarette smokers as observed in human populations may be the result of activation and mutation of the H-ras gene. A possible pathogenetic mechanism of nicotine in the pancreas activating multiple signal transduction pathways is schematically summarized in Figure 1.
We have shown previously that the cause of anemia in healthy elderly subjects can usually not be identified. In this study, hematopoiesis was examined in 18 healthy elderly subjects with unexplained anemia and in 15 young and 15 healthy elderly individuals without anemia. No reduction in circulating testosterone was noted, making decreased androgen levels as a cause for the anemia unlikely. The 2,3 diphospho- glycerate (2,3DPG) levels in the anemic subjects were significantly higher than their corresponding controls, suggesting that the anemia was pathologic, as no increase would be expected if the low hemoglobin was a physiologic adjustment to age. The anemia was associated with a reduction in marrow normoblast and CFU-E number, but no decrease in BFU- E levels was seen. This suggests that the mechanism of the anemia is a decrease in stem cell proliferation. This could be caused by a reduction in circulating erythropoietin or a defect in end organ response. A second possibility is that a basic cellular abnormality exists. The presence of an overall reduction in hematopoiesis in anemic elderly (decreased peripheral blood counts, reduced marrow myeloid precursors, and CFU-C levels) makes this especially likely. The abnormality may be caused by a mechanism unrelated to the aging process. The fact that nonanemic elderly also have reductions in hematopoiesis suggests that age contributes to the defect.
The objectives of the present study were to determine the effect of nicotine on MAPK signaling and on the proliferation of AR42J cells as well as to assess the relationship between MAPK activation and exocrine secretion in these cells. AR42J cells were incubated with nicotine and analyzed for the activation of MAPK by Western blot analysis using their respective antibodies and confirmed by immunohistochemistry. The effect of nicotine on cell proliferation was determined by the spectrophotometric method, and cell function was assessed by cholecystokinin (CCK)-stimulated amylase release into the culture medium. Nicotine at a dose of 100 microM induced phospho-ERK1/2 activation maximally in 3 min compared with untreated cells. Furthermore, immunofluorescence study confirmed the nicotine-induced increase in translocation of phospho-ERK1/2 to the nucleus. Activation of phospho-ERK1/2 was inhibited by an ERK1/2 pathway inhibitor but not by a nicotine receptor antagonist. At the same dose, there was significantly enhanced proliferation of AR42J cells until 72 h without toxic effect, as the percentage of lactate dehydrogenase release remained unchanged. Other MAPKs, c-Jun NH2-terminal kinase 1/2 and p38 MAPK, were not affected by nicotine treatment. At a nicotine dose of 100 microM, the CCK-stimulated release of amylase was maximal at 6 min, and, although a nicotinic receptor antagonist inhibited this response, it was not inhibited by the ERK1/2 pathway inhibitor. We conclude that nicotine treatment induced activation of ERK1/2 and increased the proliferation of AR42J cells. The data further indicate that MAPK signaling by nicotine is independent of the secretory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.