This article considers the possibility of connecting the problems of the engineering synthesis of frequency control systems for induction motor drives (IMD) with the theory of the identification of IMD based on the equations of a generalized AC electric machine. The article presents experimental studies of load parrying in IMD with vector (VC) and scalar (SC) controls. These results indicate the absence of fundamental advantages in a drive with VC. This advantage should manifest in a more efficient formation of the moment and fast transients. A method was proposed for describing IMD by nonlinear transfer functions, making it possible to formulate the principle of the correction of IMD and a method for assessing their efficiency. The article shows that the correction based on the proposed nonlinear transfer functions of the induction motor is much more efficient than the traditional VC, which was confirmed by detailed experiments and modeling. The most important results are given in the article. An assumption was made that the efficiency advantage was due to more accurate identification of the dynamics of an IMD with a gear function instead of vector equations.
This article presents the results of the analysis of experimental data that were obtained during industrial tests of an adjustable asynchronous traction electric drive of a shuttle car for the mining industry. During these tests, by changing the parameters of the stator voltage, the stator currents of the induction motor were optimized when the load changes over a wide range (from −1.5 Tn to + 1.5 Tn). The authors managed to significantly reduce the effective values of the stator currents of the motor, but at the same time it was found that, with the load and even the rate of its change, oscillations of the effective values of currents with variable amplitude and frequency occur. It turned out to be very difficult to explain these oscillations and the variability of their parameters using traditional mathematical methods for describing processes in asynchronous electric motors. Vector equations and diagrams are valid only at constant frequencies of the stator voltage and, in the modes of their significant changes, which exist during self-oscillations of the effective values of the motor stator current, their error is very large. To analyze the conditions of the self-oscillations, it was proposed to use nonlinear continuous transfer functions that describe the formation of torque in induction motors. The article shows how such transfer functions make it possible to take into account the influence of the load torque and the speed of its change on the parameters of the self-oscillations of the effective values of the stator current of asynchronous electric drives experiencing such loads. The article proposes a qualitative analysis of the results of experiments carried out on real tracks of the movement of the shuttle car. The analysis of experimental data confirmed the effectiveness of using nonlinear transfer functions to evaluate the dynamics of asynchronous electric drives and the sufficient accuracy of the proposed method. In the course of research, it is shown how the conditions of the boundary stability of the drive depend on external loads that change the nonlinear transfer function of the induction motor. As a result, it was found that the condition of boundary stability and the parameters of the self-oscillations are affected not only by the magnitude, but also by the rate of load change. The article made assumptions about possible options for the effective correction of asynchronous electric drives experiencing variable loads.
One of the rapidly developing research areas is the creation of systems. which are commonly referred to as cyberphysical complexes. In such systems, devices and complexes interact with a completely different physical nature. The role of a person in such systems usually consists in the formation of final tasks for “artificial intelligence” and executive mechanisms. The functioning of actuators is controlled by accurate information systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.