Biogenic synthesis of silver nanoparticles using microorganisms has found interest recently since last decade because of their prospect to synthesize nanoparticles of various size, shape and morphology which are eco-friendly. Here, an eco-friendly method for production of silver nanoparticles from Bacillus clausii cultured from Enterogermina is explored. Along with the biosynthesis and conformity test, in silico studies was done on NADPH dependent nitrate reductase enzymes from the view point of designing a rational enzymatic strategy for the synthesis. The detailed characterization of the nanoparticles was carried out using UV-Vis spectroscopy, Dynamic Light Scattering (DLS) particle size analysis, Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) analysis. Computational profiling and in silico characterization of NADH dependent enzymes was carried out based on literature and work done so far. Nitrate reductase sequence was retrieved from NCBI for characterization. Secondary structure was evaluated and verified by JPred as well as SOPMA Tool. Tertiary structure was also modeled by MODELLER and ITASSER parallel and the best structure was selected based on energy values. Structure validation was done by GROMACS and RMSD, RMSF, temperature variation plot were also plotted. Interactions graphs between nitrate reductase and ligand silver nitrate was done through molecular docking using Hex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.