Skills are the common ground between employers, job seekers and educational institutions which can be analyzed with the help of artificial intelligence (AI), specifically natural language processing (NLP) techniques. In this paper we explore a state-of-the-art pipeline that extracts, vectorizes, clusters, and compares skills to provide recommendations for all three players—thereby bridging the gap between employers, job seekers and educational institutions. As companies hiring data scientists report that it is increasingly difficult to find a so-called "unicorn data scientist" [1], we conduct our experiments and analysis using companies’ job postings for a data scientist position, job seekers’ CVs for that position, and a curriculum from a master's program in data science. However, our investigated methods and our final recommendation system can be applied to other job positions as well. Our best system combines Sentence-BERT [2], UMAP [3], DBSCAN [4], and K-means clustering [5]. To also evaluate feedback from potential users, we conducted a survey, in which the majority of employers’, job seekers’ and educational institutions’ representatives state that with the help of our automatic recommendations, processes related to skills are more effective, faster, fairer, more explainable, more autonomous and more supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.