High-index dielectric metasurfaces featuring Mie-type electric and magnetic resonances have been of a great interest in a variety of applications such as imaging, sensing, photovoltaics and others, which led to the necessity of an efficient large-scale fabrication technique. To address this, here we demonstrate the use of single-pulse laser interference for direct patterning of an amorphous silicon film into an array of Mie resonators. The proposed technique is based on laser-interference-induced dewetting. A precise control of the laser pulse energy enables the fabrication of ordered dielectric metasurfaces in areas spanning tens of micrometers and consisting of thousands of hemispherical nanoparticles with a single laser shot. The fabricated nanoparticles exhibit a wavelength-dependent optical response with a strong electric dipole signature. Variation of the pre-deposited silicon film thickness allows tailoring of the resonances in the targeted visible and infrared spectral ranges. Such direct and highthroughput fabrication paves the way towards a simple realization of spatially invariant metasurface-based devices.Keywords dielectric nanostructures, silicon resonators, metasurfaces, laser-matter interaction, direct laser interference patterning, multi-beam interference
A coupled dielectric-metal metasurface (CDMM) consisting of amorphous silicon (a-Si) rings and subwavelength holes in Au layer separated by a SiO 2 layer is presented. The design parameters of the CDMM is numerically optimized to have a polarization independent peak transmittance of 0.55 at 1540 nm with a Full Width at Half Maximum (FW H M) of 10 nm. The filter also has a 100 nm quite zone with ∼ 10 −2 transmittance. A radiating two-oscillator model reveals the fundamental resonances in the filter which interfere to produce the electromagnetically induced transparency (EIT) like effect. Multipole expansion of the currents in the structure validates the fundamental resonances predicted by the two-oscillator model. The presented CDMM filter is robust to artifacts in device fabrication and has performances comparable to a conventional Fabry-Pérot filter. However, it is easier to be integrated in image sensors as the transmittance peak can be tuned by only changing the periodicity resulting in a planar structure with a fixed height. arXiv:1911.07573v1 [physics.optics]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.