Because of the increasing relevance of the Internet of Things and location-based services, researchers are evaluating wireless positioning techniques, such as fingerprinting, on Low Power Wide Area Network (LPWAN) communication. In order to evaluate fingerprinting in large outdoor environments, extensive, time-consuming measurement campaigns need to be conducted to create useful datasets. This paper presents three LPWAN datasets which are collected in large-scale urban and rural areas. The goal is to provide the research community with a tool to evaluate fingerprinting algorithms in large outdoor environments. During a period of three months, numerous mobile devices periodically obtained location data via a GPS receiver which was transmitted via a Sigfox or LoRaWAN message. Together with network information, this location data is stored in the appropriate LPWAN dataset. The first results of our basic fingerprinting implementation, which is also clarified in this paper, indicate a mean location estimation error of 214.58 m for the rural Sigfox dataset, 688.97 m for the urban Sigfox dataset and 398.40 m for the urban LoRaWAN dataset. In the future, we will enlarge our current datasets and use them to evaluate and optimize our fingerprinting methods. Also, we intend to collect additional datasets for Sigfox, LoRaWAN and NB-IoT.
Abstract:Because of the increasing relevance of the Internet of Things and location-based services, researchers are evaluating wireless positioning techniques, such as fingerprinting, on Low Power Wide Area Network (LPWAN) communication. In order to evaluate fingerprinting in large outdoor environments, extensive, time-consuming measurement campaigns need to be conducted to create useful datasets. This paper presents three LPWAN datasets which are collected in large-scale urban and rural areas. The goal is to provide the research community with a tool to evaluate fingerprinting algorithms in large outdoor environments. During a period of three months, numerous mobile devices periodically obtained location data via a GPS receiver which was transmitted via a Sigfox or LoRaWAN message. Together with network information, this location data is stored in the appropriate LPWAN dataset. The first results of our basic fingerprinting implementation, which is also clarified in this paper, indicate a mean location estimation error of 214.58 m for the rural Sigfox dataset, 688.97 m for the urban Sigfox dataset and 398.40 m for the urban LoRaWAN dataset. In the future, we will enlarge our current datasets and use them to evaluate and optimize our fingerprinting methods. Also, we intend to collect additional datasets for Sigfox, LoRaWAN and NB-IoT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.