Persistence of forest-dependent species in fragmented landscapes strongly relies on sufficient dispersal between patches, making it important to understand how animal movements are affected by the intervening matrix. Movements can be influenced through selection or avoidance of land cover based on their perceived suitability for foraging or providing cover. The composition and configuration of the matrix will, therefore, most likely be an important factor to consider when estimating connectivity between patches. To address this, we performed translocation experiments to understand how forest birds used different land cover types in a fine-grained matrix of a fragmented Afromontane biodiversity hotspot (Taita Hills, Kenya). Our results revealed that use of land cover types for both the forest specialist Cabanis's greenbul Phyllastrephus cabanisi and for the forest generalist white-starred robin Pogonocichla stellata was disproportional to their availability. However, this effect was influenced by matrix configuration; in patchy matrices, land cover selection was more pronounced compared with more uniform matrices, especially for the forest specialist. At the scale of movement steps, risk avoidance seemed to be a strong factor in the route decisions for both species. Observed steps contained on average lower proportions of open land cover and did less frequently intersect built-up areas than expected. P. stellata did not differentiate between the alternative land cover types, whereas P. cabanisi preferred steps that contained more indigenous forest. The observed negative relationship between degree of forest dependency and matrix permeability implies that for members of the Taita bird community, which are even more dependent on intact forest habitat (i.e. the critically endangered Taita thrush Turdus helleri), current permeability of the matrix may be even lower. Matrix restoration to improve connectivity may, therefore, be a crucial instrument for the long-term survival of forest-dependent species in these fragmented Afromontane landscapes.
In the Taita Hills in southern Kenya, remnants of the original Afromontane forest vegetation are restricted to isolated mountain peaks. To assess the level of degradation and the need for forest restoration, we examined how forest plant communities and their indicator species vary between and within remnant patches of cloud forest. We used ordinal abundance data to compare plant communities in eight forest fragments. We also analyzed data on the diversity and abundance of trees in 57 0.1 ha plots to compare tree communities within and between the largest two of these fragments, Ngangao (120 ha) and Mbololo (220 ha). The extant vegetation of the Taita Hills at landscape scale consists of secondary moist montane to intermediate montane forest. There was a high species dissimilarity between fragments (69%). Variation in species composition coincided with an abiotic gradient related to elevation. At plot level, secondary successional species and species of forest edges were most abundant and most frequent. Inferred clusters of plots almost entirely coincided with the two forest fragments. Indicator species associated with forest margins and gaps were more frequent in the smaller of the two forest fragments, while indicators for the larger fragment were more typical for less disturbed moist forest. Abiotic site variability but also different levels of disturbance determine site-specific variants of the montane forest. Conservation efforts should not only focus on maintaining forest quantity (size), but also on forest quality (species composition). Late-successional rainforest species are underrepresented in the woody plant communities of the Taita Hills and assisting restoration of viable populations of cloud forest climax tree species is urgently needed
Besides competition for abiotic resources, an increasing number of studies show evidence of the effects of invasive species on the pollination success and reproductive output of indigenous species. We studied the effect of the invasive Impatiens glandulifera Royle on the process of reproduction in the indigenous Lythrum salicaria L. and Alisma plantago-aquatica L. and the naturalized Oenothera biennis L. The latter three species (target species) were transplanted into pots and placed in invaded and non-invaded areas. During flowering season of each of these species, we measured species composition and abundance of pollinators, pollinator behaviour, pollen deposition and female reproductive output of the target species. Competitive effects were found for L. salicaria, in which fewer pollinator species and number of foraging individuals were observed, and also, lower pollen deposition and seed set were measured in these invaded populations. In contrast, the reproductive success of A. plantago-aquatica and O. biennis was not affected by the presence of I. glandulifera. Our data indicate that when invasive and indigenous species show a large overlap in pollinator community, which is the case for I. glandulifera and L. salicaria, competition between these species can occur. When both species have a different pollinator community, pollination success and reproductive output is not affected, even when the indigenous populations are densely and abundantly invaded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.