This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
There is concern that variola virus, the aetiological agent of smallpox, may be used as a biological weapon. For this reason several countries are now stockpiling (vaccinia virus-based) smallpox vaccine. Although the preventive use of smallpox vaccination has been well documented, little is known about its efficacy when used after exposure to the virus. Here we compare the effectiveness of (1) post-exposure smallpox vaccination and (2) antiviral treatment with either cidofovir (also called HPMPC or Vistide) or with a related acyclic nucleoside phosphonate analogue (HPMPO-DAPy) after lethal intratracheal infection of cynomolgus monkeys (Macaca fascicularis) with monkeypox virus (MPXV). MPXV causes a disease similar to human smallpox and this animal model can be used to measure differences in the protective efficacies of classical and new-generation candidate smallpox vaccines. We show that initiation of antiviral treatment 24 h after lethal intratracheal MPXV infection, using either of the antiviral agents and applying various systemic treatment regimens, resulted in significantly reduced mortality and reduced numbers of cutaneous monkeypox lesions. In contrast, when monkeys were vaccinated 24 h after MPXV infection, using a standard human dose of a currently recommended smallpox vaccine (Elstree-RIVM), no significant reduction in mortality was observed. When antiviral therapy was terminated 13 days after infection, all surviving animals had virus-specific serum antibodies and antiviral T lymphocytes. These data show that adequate preparedness for a biological threat involving smallpox should include the possibility of treating exposed individuals with antiviral compounds such as cidofovir or other selective anti-poxvirus drugs.
The use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naïve and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replicationdeficient strain of VV, has been proven to be safe in humans and immunocompromised animals, and its efficacy against smallpox is currently being addressed. Here we directly compare the efficacies of MVA alone and in combination with classical VV-based vaccines in a cynomolgus macaque monkeypox model. The MVA-based smallpox vaccine protected macaques against a lethal respiratory challenge with monkeypox virus and is therefore an important candidate for the protection of humans against smallpox.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.