The adoption of high-accuracy speech recognition algorithms without an effective evaluation of their impact on the target computational resource is impractical for mobile and embedded systems. In this paper, techniques are adopted to minimise the required computational resource for an effective mobile-based speech recognition system. A Dynamic MultiLayer Perceptron speech recognition technique, capable of running in real time on a state-of-the-art mobile device, has been introduced. Even though a conventional hidden Markov model when applied to the same dataset slightly outperformed our approach, its processing time is much higher. The Dynamic Multi-layer Perceptron presented here has an accuracy level of 96.94% and runs significantly faster than similar techniques.
Bio-inspired vision sensors are particularly appropriate candidates for navigation of vehicles or mobile robots due to their computational simplicity, allowing compact hardware implementations with low power dissipation. The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector.
This paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the conversion into labelled objects using a connected component labelling algorithm. The background models are based on 24-bit RGB values and 8-bit greyscale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The realtime connected component labelling algorithm, also designed for FPGA implementation, has efficiently been integrated with the pixel level background subtraction to extract pixels of a moving object as a single blob. The connected component algorithm, run-length encodes the binary image output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.