The Use of Froth Flotation for Selective Separation of Plastic Wastes from Soil Kofi Moro and Dorothy A. Dechie Abstract — In recycling of plastics, unless the goal is to form composites or materials having special properties, it is not advisable to mix plastics of different kinds because of the differences in their molecular weights and chain lengths. Hence, there is the need to separate these plastics when they are mixed before recycle can be done. This project investigated the selective separation of Polypropylene (PP), Polystyrene (PS) and Polyethylene terephthalate (PET) plastics out of soils using froth flotation. Pulverized samples were prepared from post-consumer plastic sources (PP, PS and PET) and soil and mixed uniformly to form a composite sample. The composite sample was subjected to froth flotation. Two tests were performed. A first test, where there was no addition of a depressant (tannic acid), and a second test, where there was addition of tannic acid to depress some of the plastics in order to selectively separate them. Recoveries from each test work indicated that, plastics are naturally hydrophobic and can be floated out of soils without modifying their surface properties. However, selective separations of the plastics were achieved when tannic acid was used to modify the surface properties of the plastic types.
The leaching of manganese (Mn) ore in sulphuric acid (H2SO4) under reductive conditions has been studied. The effects of leaching parameters such as ore/reductant mass ratio, acid concentration, ore particle size, solid/liquid ratio, leaching time and different reductant potential on the maximum recovery of manganese have been investigated. The optimal leaching conditions were ore/reductant mass ratio of 1:3.4, acid concentration of 10% v/v H2SO4, ore particle size of 63-200 µm, particle size of iron powder of –150 µm, solid/liquid ratio of 1:20, and leaching time of 1.5 hours at room temperature. A comparative analysis on the recovery of manganese ore was also investigated under the optimal leaching conditions for two different reductants, iron sulphate (FeSO4) and iron powder. The maximum manganese recoveries at the optimal leaching conditions in the presence of FeSO4 and iron powder are 80.6% and 95%, respectively. The results indicate that manganese can readily be leached during short time at room temperature. Furthermore, iron powder has a stronger reducing power compared to FeSO4 with respect to manganese ore recovery.
The leaching of manganese (Mn) ore in sulphuric acid (H2SO4) under reductive conditions has been studied. The effects of leaching parameters such as ore/reductant mass ratio, acid concentration, ore particle size, solid/liquid ratio, leaching time and different reductant potential on the maximum recovery of manganese have been investigated. The optimal leaching conditions were ore/reductant mass ratio of 1:3.4, acid concentration of 10% v/v H2SO4, ore particle size of 63-200 µm, particle size of iron powder of –150 µm, solid/liquid ratio of 1:20, and leaching time of 1.5 hours at room temperature. A comparative analysis on the recovery of manganese ore was also investigated under the optimal leaching conditions for two different reductants, iron sulphate (FeSO4) and iron powder. The maximum manganese recoveries at the optimal leaching conditions in the presence of FeSO4 and iron powder are 80.6% and 95%, respectively. The results indicate that manganese can readily be leached during short time at room temperature. Furthermore, iron powder has a stronger reducing power compared to FeSO4 with respect to manganese ore recovery.
The Use of Froth Flotation for Selective Separation of Plastic Wastes from Soil Kofi Moro and Dorothy A. Dechie Abstract — In recycling of plastics, unless the goal is to form composites or materials having special properties, it is not advisable to mix plastics of different kinds because of the differences in their molecular weights and chain lengths. Hence, there is the need to separate these plastics when they are mixed before recycle can be done. This project investigated the selective separation of Polypropylene (PP), Polystyrene (PS) and Polyethylene terephthalate (PET) plastics out of soils using froth flotation. Pulverized samples were prepared from post-consumer plastic sources (PP, PS and PET) and soil and mixed uniformly to form a composite sample. The composite sample was subjected to froth flotation. Two tests were performed. A first test, where there was no addition of a depressant (tannic acid), and a second test, where there was addition of tannic acid to depress some of the plastics in order to selectively separate them. Recoveries from each test work indicated that, plastics are naturally hydrophobic and can be floated out of soils without modifying their surface properties. However, selective separations of the plastics were achieved when tannic acid was used to modify the surface properties of the plastic types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.