In this paper we propose a novel approach which automatizes task partitioning in heterogeneous systems. Our framework is based on the Insieme Compiler and Runtime infrastructure [1]. The compiler translates a single-device OpenCL program into a multi-device OpenCL program. The runtime system then performs dynamic task partitioning based on an offline-generated prediction model. In order to derive the prediction model, we use a machine learning approach that incorporates static program features as well as dynamic, input sensitive features. Our approach has been evaluated over a suite of 23 programs and achieves performance improvements compared to an execution of the benchmarks on a single CPU and a single GPU only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.