By use of the reversible trimerization of boronic acids, the series of boroxine cages 3-mer, 6-mer, and 12-mer were constructed from rationally designed diboronic acids whose bond angles between two C-B bonds are 60°, 84°, and 117°, respectively. Boroxine cages 6-mer and 12-mer have 1.5 and 2.5 nm sized cavities, respectively.
The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.
Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match any known compounds in the spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowed assignment of the structures of 13 new cyclic terpenes. Among these newly identified compounds, two were found to be linear triquinane sesquiterpenes that have never previously been isolated from bacteria or any other source. The remaining 11 new compounds were shown to be diterpene hydrocarbons and alcohol, including hydropyrene (1), hydropyrenol (2), tsukubadiene (11), and odyverdienes A (12) and B (13) each displaying a novel diterpene skeleton that had not previously been reported.
Acid–base co-crystallization has been used to
control the
photochromic reactivities of salicylideneaniline derivatives in co-crystals.
The series of co-crystals N-salicylidene-3-carboxyaniline
(1) with 2-aminopyridine (a), guanylthiourea
(b), cytosine (c), 4,4′-bipyridyl
(d), piperazine anhydrous (e), 1,3-di-o-tolylguanidine (f), and dibenzylamine (g) and N-salicylidene-4-carboxyaniline (2) with 4,4′-bipyridine (d) and N,N-dibenzylamine (g) have
been synthesized. The weak photochromic compound 1 becomes
nonphotochromic or strongly photochromic in the co-crystals and the
nonphotochromic compound 2 becomes photochromic in the
co-crystal 2g. The photochromic properties of compounds 1 and 2 change because of the conformational
changes induced in the salicylideneaniline moieties in the crystal
structure. The lifetimes of the colored species formed in the photochromic
reaction are also affected by the changes in the environment around
the molecule in the crystal. As shown in this study, acid–base
type co-crystallization may be a promising method to control the photochromic
reactivities of salicylideneaniline derivatives.
Steric character is one of the most fundamental factors to determine the reactivity of the substrate in organic synthesis. In bimolecular reaction, the sterically-bulky group situated close to the reactive center generally prevents the approach of the reaction partner retarding the bond formation. This report describes, to the contrary, significantly enhanced reactivity of 2,6-disubstituted phenyl azides observed in catalyst-free 1,3-dipolar cycloaddition with alkynes, unexpectedly reacting faster than unsubstituted phenyl azide and even more faster than unhindered alkyl azide, despite the steric hindrance adjacent to the reactive azido group. Experimental and computational studies have indicated that the steric hindrance eliciting the inhibition of resonance between azido group and the aromatic ring is the primary cause of this apparently-paradoxical phenomenon. This is the first type of steric acceleration, indicating a possibility of designing a highly reactive functional group by strategically locating it in the sterically-congested environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.