Although many reports have demonstrated that ectopic pain develops in the orofacial region following tooth pulp inflammation, which often causes misdiagnosis and inappropriate treatment for patients with pulpitis, the precise mechanism remains unknown. In the present study, we hypothesized that the functional interaction between satellite glial cells and neurons mediated by interleukin 1β (IL-1β) in the trigeminal ganglion (TG) is involved in ectopic orofacial pain associated with tooth pulp inflammation. The digastric muscle electromyogram (D-EMG) activity elicited by capsaicin administration into the maxillary second molar tooth pulp was analyzed to evaluate the noxious reflex and was significantly increased in rats with inflammation of the maxillary first molar (M1) versus rats injected with saline. A significant increase in the expression of connexin43 (Cx43), a gap junction containing protein, was observed in activated satellite glial cells surrounding second molar-innervating neurons in the TG after M1 pulpitis. Daily administration of Gap26, a Cx43 mimetic peptide and inhibitor, in the TG significantly suppressed the enhancement of capsaicin-induced D-EMG activity and the percentage of Fluoro-Gold (FG)-labeled cells encircled by glial fibrillary acid protein-immunoreactive (IR) + Cx43-IR cells after M1 pulp inflammation ( P < 0.01). The percentage of FG-labeled cells encircled by glial fibrillary acid protein-IR + IL-1β-IR cells, IL-1 type I receptor-IR cells labeled with FG, and TRPV1-IR cells labeled with FG significantly increased after M1 pulp inflammation ( P < 0.01). Daily administration of IL-1ra, an IL-1 receptor antagonist, into the TG significantly reduced the enhancement of capsaicin-induced D-EMG activity and the percentage of TRPV1-IR neurons labeled with FG after M1 pulp inflammation ( P < 0.01). The present findings suggest that satellite glial cell is activated in the TG via activated gap junctions composed of Cx43 following tooth pulp inflammation, which leads to the hyperactivation of remote neurons via IL-1β mechanisms and results in ectopic tooth pulp pain in the adjacent tooth.
Pulpitis often causes referred pain in opposing teeth. However, the precise mechanism underlying ectopic pain associated with tooth-pulp inflammation remains unclear. We performed the present study to test the hypothesis that functional interactions between satellite glial cells (SGCs) and trigeminal ganglion (TG) neurons are involved in ectopic orofacial pain associated with tooth-pulp inflammation. Digastric muscle electromyograph (D-EMG) activity elicited by administration of capsaicin into the upper second molar pulp (U2) was analyzed to evaluate noxious reflex responses. D-EMG activity was significantly increased in rats with lower first molar (L1) inflammation relative to salinetreated rats. Significantly increased expression of glial fibrillary acid protein (GFAP), a marker of activated glial cells, and connexin 43 (Cx43), a gap-junction protein, was observed in activated SGCs surrounding U2-innervating TG-neurons after L1-pulp inflammation. Daily administration of Gap26, a Cx43-inhibiting mimetic peptide, into the TG significantly suppressed capsaicin-induced D-EMG activity enhancement and reduced the percentage of fluorogold-labeled (U2-innervated) cells that were surrounded by GFAP-immunoreactive (IR) and Cx43-IR cells after L1-pulp inflammation. These findings indicate that tooth-pulp inflammation induces SGC activation and subsequent spread of SGC activation in the TG via Cx43-containing gap junctions. Thus, remote neuron excitability becomes enhanced in the TG following tooth-pulp inflammation, resulting in ectopic toothpulp pain in the contralateral tooth.
The P2Y receptor expressed in satellite cells of the trigeminal ganglion is thought to contribute to neuropathic pain. The functional interaction between neurons and satellite cells via P2Y receptors and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) underlying neuropathic pain in the tongue was evaluated in this study. Expression of P2Y receptor was enhanced in pERK1/2-immunoreactive cells encircling trigeminal ganglion neurons after lingual nerve crush. The administration to lingual nerve crush rats of a selective P2Y receptor antagonist, MRS2395, attenuated tongue hypersensitivity to mechanical and heat stimulation and suppressed the increase in the relative numbers of calcitonin gene-related peptide (CGRP)-immunoreactive neurons and neurons encircled by pERK1/2-immunoreactive cells. Administration of the P2Y receptor agonist, 2-(methylthio)adenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), to naïve rats induced neuropathic pain in the tongue, as in lingual nerve crush rats. Co-administration of 2-MeSADP + MRS2395 to naïve rats did not result in hypersensitivity of the tongue. The relative number of CGRP-immunoreactive neurons increased following this co-administration, but to a lesser degree than observed in 2-MeSADP-administrated naïve rats, and the relative number of neurons encircled by pERK1/2-immunoreactive cells did not change. These results suggest that the interaction between activated satellite cells and CGRP-immunoreactive neurons via P2Y receptors contributes to neuropathic pain in the tongue associated with lingual nerve injury.
Background The existence of referred pain and ectopic paresthesia caused by tooth pulp inflammation may make definitive diagnosis difficult and cause misdiagnosis or mistreatment; thus, elucidation of that molecular mechanism is urgent. In the present study, we investigated the mechanisms underlying ectopic pain, especially tongue hyperalgesia, after tooth pulp inflammation. Methods A rat model with mandibular first molar tooth pulp exposure was employed. Tooth pulp exposure-induced heat and mechanical-evoked tongue hypersensitivity was measured, and immunohistochemical staining for Iba1, a marker of active macrophages, IL-1β, IL-1 type I receptor (IL-1RΙ), and toll-like receptor 4 in the trigeminal ganglion was performed. In addition, we investigated the effects of injections of liposomal clodronate Clophosome-A (LCCA), a selective macrophage depletion agent, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS, a toll-like receptor 4 antagonist), IL-1β, or heat shock protein 70 (Hsp70, a selective agonist of toll-like receptor 4), to examine changes in tongue hypersensitivity and in the regulation of IL-1RΙ, toll-like receptor 4, and transient receptor potential vanilloid 1 (TRPV1) biosynthesis. Results At day 1 after tooth pulp exposure, obvious tooth pulp inflammation was observed. Tooth pulp exposure-induced heat and mechanical tongue hypersensitivity was observed from days 1 to 3 after tooth pulp exposure. The production of IL-1β in activated macrophages and toll-like receptor 4 and IL-1RΙ expression were significantly increased in trigeminal ganglion neurons innervating the tongue following tooth pulp exposure. Intra-trigeminal ganglion injection of LCCA significantly suppressed tongue hypersensitivity; however, toll-like receptor 4 and IL-1RΙ expression in trigeminal ganglion neurons innervating the tongue was not significantly altered. Intra-trigeminal ganglion injection of LPS-RS significantly suppressed tongue hypersensitivity and reduced IL-1RΙ expression in the trigeminal ganglion neurons innervating the tongue following tooth pulp exposure. Intra-trigeminal ganglion injection of recombinant Hsp70 significantly promoted tongue hypersensitivity and increased IL-1RI expression in trigeminal ganglion neurons innervating the tongue in naive rats. Furthermore, intra-trigeminal ganglion injection of recombinant IL-1β led to tongue hypersensitivity and enhanced TRPV1 expression in trigeminal ganglion neurons innervating the tongue in naive rats. Conclusions The present findings suggest that the neuron-macrophage interaction mediated by toll-like receptor 4 and IL-1RI activation in trigeminal ganglion neurons affects the pathogenesis of abnormal tongue pain following tooth pulp inflammation via IL-1RI and TRPV1 signaling in the trigeminal ganglion. Further research may contribute to the establishment of new therapeutic and diagnostic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.