We compared the photosynthetic and photoassimilate transport responses of Melaleuca cajuputi Powell seedlings to root hypoxia with those of Eucalyptus camaldulensis Dehnh. Control and hypoxia treated roots were maintained in a nutrient solution through which air or nitrogen was bubbled. Under root hypoxic conditions, seedlings of M. cajuputi, a flood-tolerant species, maintained height growth, whereas seedlings of E. camaldulensis, a moderately flood-tolerant species, showed markedly decreased height growth compared with control seedlings. Root hypoxia caused decreases in whole-plant biomass, photosynthetic rate and stomatal conductance in E. camaldulensis, but not in M. cajuputi. Photoassimilate transport to roots decreased significantly in E. camaldulensis seedlings 4 days after treatment and starch accumulated in mature leaves. Photoassimilate supply to hypoxic roots of E. camaldulensis seedlings was, thus, limited by reduced photoassimilate transport rather than by reduced photosynthesis. In contrast, M. cajuputi seedlings showed sustained photoassimilate transport to hypoxic roots and persistent photosynthesis, which together provided a substantial photoassimilate supply to the roots. Sucrose accumulated in hypoxic E. camaldulensis roots, but not in hypoxic M. cajuputi roots. A stable, low sucrose concentration in hypoxic roots would let M. cajuputi seedlings prolong photoassimilate transport to the roots. Photoassimilate partitioning among the water-soluble carbohydrates, starch and structural carbohydrates within the roots was unaffected by root hypoxia in E. camaldulensis, but in M. cajuputi, partitioning was shifted somewhat from structural carbohydrates to water-soluble carbohydrates. This suggests that M. cajuputi seedlings are able to increase photoassimilate utilization in metabolism and sustain energy production under root hypoxic conditions.
We investigated the roles of Al-binding ligands in Al exclusion from roots and in internal Al detoxification in roots as Al resistance mechanisms in two Al-resistant Myrtaceae trees, Eucalyptus camaldulensis Dehnh. and Melaleuca cajuputi Powell. The amounts of ligands secreted from roots and contained in root tips of these species were compared with those of an Al-sensitive species, Melaleuca bracteata F. Muell., after the roots were exposed to 0 or 1 mM AlCl 3 solution. Secretion of well-known ligands (citrate, oxalate, and malate) from roots under Al treatment was low in all species. However, in E. camaldulensis, the Al-binding capacity of root exudates under Al treatment was considerable and was higher than that in M. bracteata. Gel filtration chromatography revealed that a low-molecular-weight Al-binding ligand was secreted from roots in response to Al only in E. camaldulensis. On the other hand, the Al-binding capacity of cell sap in root tips under Al treatment was similar for the resistant and sensitive species. These results suggest that Al exclusion by secretion of the unknown low-molecular-weight Al-binding ligand from roots contributes to the Al resistance of E. camaldulensis, whereas M. cajuputi has developed Al-resistance mechanisms other than secretion of ligands from roots or concentration of internal ligands in root tips.
We exposed the roots of nine Myrtaceae species (Melaleuca bracteata F. Muell., Melaleuca cajuputi Powell, Melaleuca glomerata F. Muell., Melaleuca leucadendra [L.] L., Melaleuca quinquenervia [Cav.] S.T. Blake, Melaleuca viridiflora Sol. ex Gaertner, Eucalyptus camaldulensis Dehnh., Eucalyptus deglupta Bl., and Eucalyptus grandis W. Hill ex Maiden) to 1 mM Al in a nutrient solution for either 24 h or 20 days to evaluate their sensitivity to excess Al and to determine whether callose and lignin formation can be used as interspecific indicators of Al sensitivity. Inhibition of root elongation by Al varied among the species. Melaleuca leucadendra, M. cajuputi, E. grandis, M. quinquenervia, and E. deglupta were tolerant to 1 mM Al, whereas M. viridiflora, E. camaldulensis, M. glomerata, andM. bracteata were sensitive to 1 mM Al. We found that Al induced callose formation in the root tips of each species, but lignin was formed only in the root tips of the most sensitive species, M. bracteata. Root elongation at 1 mM Al was negatively correlated with Al-induced callose formation but not with the Al-induced lignin formation in the root tips. These results suggest that Al-induced callose formation, rather than lignin formation, can be used as an interspecific indicator of Al sensitivity.
To estimate the aboveground biomass of tropical secondary forests dominated by pioneer species, allometric equations to relate diameter at breast height with the dry mass of the aboveground organs of several pioneer species were developed. The aboveground biomass of secondary forests was estimated using four methods based on the allometric equations. Biomass estimated with an allometric equation for all species combined was equivalent to that estimated with species-specific allometric equations. However, the estimated biomass based on a general-purpose allometric equation was substantially higher than that using other allometric equations. The allometric equation for all species combined is suitable for estimating the biomass of a secondary forest from the view points of accuracy and labor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.