The immune system can remember a previously experienced pathogen and can evoke an enhanced response to reinfection that depends on memory lymphocyte populations. Recent advances in tracking antigen-experienced memory B cells have revealed the existence of distinct classes of cells that have considerable functional differences. Some of these differences seem to be determined by the stimulation history during memory cell formation. To induce rapid recall antibody responses, the contributions of other types of cells, such as memory T follicular helper cells, have also now begun to be appreciated. In this Review, we discuss these and other recent advances in our understanding of memory B cells, focusing on the underlying mechanisms that are required for rapid and effective recall antibody responses.
Despite the importance of memory B cells in protection from reinfection, how such memory cells are selected and generated during germinal-center (GC) reactions remains unclear. We found here that light-zone (LZ) GC B cells with B cell antigen receptors (BCRs) of lower affinity were prone to enter the memory B cell pool. Mechanistically, cells in this memory-prone fraction had higher expression of the transcriptional repressor Bach2 than that of their counterparts with BCRs of higher affinity. Haploinsufficiency of Bach2 resulted in reduced generation of memory B cells, independently of suppression of the gene encoding the transcription factor Blimp-1. Bach2 expression in GC cells was inversely correlated with the strength of help provided by T cells. Thus, we propose an instructive model in which weak help from T cells maintains relatively high expression of Bach2, which predisposes GC cells to enter the memory pool.
Protective immunity against pathogens depends on the efficient generation of functionally diverse effector and memory T lymphocytes. However, whether plasticity during effector-to-memory CD8 T cell differentiation affects memory lineage specification and functional versatility remains unclear. Using genetic fate mapping analysis of highly cytotoxic KLRG1 effector CD8 T cells, we demonstrated that KLRG1 cells receiving intermediate amounts of activating and inflammatory signals downregulated KLRG1 during the contraction phase in a Bach2-dependent manner and differentiated into all memory T cell linages, including CXCR1 peripheral memory cells and tissue-resident memory cells. "ExKLRG1" memory cells retained high cytotoxic and proliferative capacity distinct from other populations, which contributed to effective anti-influenza and anti-tumor immunity. Our work demonstrates that developmental plasticity of KLRG1 effector CD8 T cells is important in promoting functionally versatile memory cells and long-term protective immunity.
Higher- or lower-affinity germinal center (GC) B cells are directed either to plasma cell or GC recycling, respectively; however, how commitment to the plasma cell fate takes place is unclear. We found that a population of light zone (LZ) GC cells, Bcl6CD69 expressing a transcription factor IRF4 and higher-affinity B cell receptors (BCRs) or Bcl6CD69 with lower-affinity BCRs, favored the plasma cell or recycling GC cell fate, respectively. Mechanistically, CD40 acted as a dose-dependent regulator for Bcl6CD69 cell formation. Furthermore, we found that expression of intercellular adhesion molecule 1 (ICAM-1) and signaling lymphocytic activation molecule (SLAM) in Bcl6CD69 cells was higher than in Bcl6CD69 cells, thereby affording more stable T follicular helper (Tfh)-GC B cell contacts. These data support a model whereby commitment to the plasma cell begins in the GC and suggest that stability of Tfh-GC B cell contacts is key for plasma cell-prone GC cell formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.