A nanoindentation technique with a spherical indenter of tip radius 10 μm is applied to the evaluation of stress-strain curve at a local area of a pure iron under the uniaxial compressive stress exerted through the iron, and the influence of the compressive stress on the estimated stress-strain curve has been examined. A continuous multiple loading method is employed to determine the stress-strain curve. In the method, a set of 21 times of loading/unloading sequences with increasing terminal load are made and load-displacement curves with the different terminal loads from 0.1 mN to 100 mN are then continuously obtained and converted to a stress-strain curve. To examine the stress dependence of the stress-strain curve, the estimation by the nanoindentetion is performed under different uniaxial compressive stresses up to 250 MPa. It has been found that the stress-strain curve determined by the nanoindentation shifts upward as the compressive stress increases and the quantity of the shift is almost equal to the uniaxial stress acting on the iron specimen. It is also noted that the yield stress (0.2 % proof stress) estimated from the stress-strain curve increases almost proportionally to the uniaxial stress and the increase ratio tends to decrease as the stress reaches around 200 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.