Although semiconductor to metal phase transformation of MoTe2 by high-density laser irradiation of more than 0.3 MW/cm 2 has been reported, we reveal that the laser-induced-metal (LIM) phase is not the 1T′ structure derived by a polymorphic-structural phase transition but consists instead of semi-metallic Te induced by photo-thermal decomposition of MoTe2. The technique is used to fabricate a field effect transistor with a Pd/2H-MoTe2/LIM structure having an asymmetric metallic contact, and its contact properties are studied via scanning gate microscopy. We confirm that a Schottky barrier (a diffusion potential) is always formed at the Pd/2H-MoTe2 boundary and obstacles a carrier transport while an Ohmic contact is realized at the 2H-MoTe2/LIM phase junction for both n-and p-type carriers.
We use transient electrical measurements to investigate the details of self-heating and charge trapping in graphene transistors encapsulated in hexagonal boron nitride (h-BN) and operated under strongly nonequilibrium conditions. Relative to more standard devices fabricated on SiO 2 substrates, encapsulation is shown to lead to an enhanced immunity to charge trapping, the influence of which is only apparent under the combined influence of strong gate and drain electric fields. Although the precise source of the trapping remains to be determined, one possibility is that the strong gate field may lower the barriers associated with native defects in the h-BN, allowing them to mediate the capture of energetic carriers from the graphene channel. Self-heating in these devices is identified through the observation of time-dependent variations of the current in graphene and is found to be described by a time constant consistent with expectations for nonequilibrium phonon conduction into the dielectric layers of the device. Overall, our results suggest that h-BN-encapsulated graphene devices provide an excellent system for implementations in which operation under strongly nonequilibrium conditions is desired.
In this study, the electrostatically induced quantum confinement structure, quantum point contact, has been realized in p-type trilayer tungsten diselenide-based van der Waals heterostructure with modified van der Waals contact method with degenerately doped transition metal dichalcogenide crystals. Clear quantized conductance and pinch-off state through the onedimensional confinement were observed by dual-gating of split gate electrodes and top gate.Conductance plateaus were observed at step of 0.5 2 e 2 /h at zero and high magnetic field in addition to quater plateaus at a finite bias voltage condition indicating the intrinsic spin-polarized quantum point contact realization.
In this study, we fabricated quantum point contacts narrower than 100 nm by using an electrostatic potential to open the finite bandgap by applying a perpendicular electric field to bilayer graphene encapsulated between hexagonal boron nitride sheets. The conductance across the quantum point contact was quantized at a high perpendicular-displacement field as high as 1 V/nm at low temperature, and the quantization unit was 2e2/h instead of mixed spin and valley degeneracy of 4e2/h. This lifted degeneracy state in the quantum point contact indicates the presence of valley polarized state coming from potential profile or effective displacement field in one-dimensional channel.
Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin-orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin-orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin-orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.