In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.
Infrared-to-visible upconversion phosphors (i.e., rare earth ion-doped Y2O3 nanoparticles (UNPs)) were synthesized by the homogeneous precipitation method. Because the charge on the erbium (Er) ion-doped Y2O3 (Y2O3:Er) NP (UNP1) surface is positive under neutral conditions, the UNP1 surface was electrostatically PEGylated using negatively charged poly(ethylene glycol)- b-poly(acrylic acid) (PEG- b-PAAc). The adsorption of PEG- b-PAAc was confirmed by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The surface charge of the PEGylated UNP1s (PEG-UNP1s) was effectively shielded by the PEGylation. The dispersion stability of the UNP1s was also significantly improved by the PEGylation. The PEG-UNP1s were dispersed over 1 week under physiological conditions as a result of the steric repulsion between the PEG chains on the UNP1 surface. The upconversion emission spectrum of PEG-UNP1s was observed under physiological conditions and was confirmed by near-infrared excited fluorescence microscope observation. Streptavidin (SA)-installed ytterbium (Yb) and Er ion-codoped Y2O3 (Y2O3:Yb,Er) NPs (UNP2s) were prepared by the coimmobilization of PEG- b-PAAc and streptavidin. The PEG/SA coimmobilized UNP2s (PEG/SA-UNP2s) specifically recognized biotinylated antibodies and emitted strong upconversion luminescence upon near-infrared excitation. The obtained PEG/streptavidin coimmobilized UNPs are promising as high-performance near-infrared biolabeling materials.
A novel ratiometric nanothermometer based on over-1000 nm near-infrared emission of rare-earth doped ceramic nanophosphors was developed for temperature measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.