Understanding the dose-response relationship between ingested pathogenic bacteria and infection probability is a key factor for appropriate risk assessment of foodborne pathogens. The objectives of this study were to develop and validate a novel mechanistic dose-response model for Campylobacter jejuni and simulate the underlying mechanism of foodborne illness during digestion. Bacterial behavior in the human gastrointestinal environment, including survival at low pH in the gastric environment after meals, transition to intestines, and invasion to intestinal tissues, was described using a Bayesian statistical model based on the reported experimental results of each process while considering physical food types (liquid or solid) and host age (young adult or elderly). Combining the models in each process, the relationship between pathogen intake and the infection probability of C. jejuni was estimated and compared with reported epidemiological dose-response relationships. Taking food types and host age into account, the prediction range of the infection probability of C. jejuni successfully covered the reported dose-response relationships from actual C. jejuni outbreaks. According to sensitivity analysis of predicted infection probabilities, the host age factor and the food type factor have relatively higher relevance than other factors. Thus, the developed Key Events Dose Response Framework can derive novel information for quantitative microbiological risk assessment in addition of dose-response relationship. The developed framework is potentially applicable to other pathogens to quantify the dose-response relationship from experimental data obtained from digestion. Importance Based on the mechanistic approach called Key Events Dose Response Framework alternative to previous non-mechanistic approach, the dose-response models for infection probability of C. jejuni were developed considering with age of people who take pathogen and food type. The developed predictive framework illustrated highly accurate prediction of dose (minimum difference 0.21 log CFU) for a certain infection probability compared with the previously reported dose-response relationship. In addition, the developed prediction procedure revealed that the dose-response relationship strongly depends on food type as well as host age. The implementation of Key Event Dose Response Framework will mechanistically and logically reveal the dose-response relationship and provide useful information with quantitative microbiological risk assessment of C. jejuni on foods.
Understanding the dose-response relationship between ingested pathogenic bacteria and infection probability is a key factor for appropriate risk assessment of foodborne pathogens. The objectives of this study were to develop and validate a novel mechanistic dose-response model for Campylobacter jejuni and simulate the underlying mechanism of foodborne illness during digestion. Bacterial behavior in the human gastrointestinal environment, including gastric reductions, transition to intestines, and invasion to intestinal tissues, was described using a Bayesian statistical model based on the reported experimental results of each process while considering physical food types (liquid or solid) and host age (young or elderly). Combining the models in each process, the relationship between pathogen intake and the cell invasion probability of C. jejuni was estimated and compared with reported epidemiological dose-response relationships. Taking food types into account, estimations of the cell invasion probability of C. jejuni successfully described the reported dose-response relationships from substantial accidents. The developed calculation framework is thus potentially applicable to other pathogens to quantify the dose-response relationship from experimental data obtained from digestion.
This study was conducted to quantitatively evaluate the variability of stress resistance in different strains of Campylobacter jejuni and the uncertainty of such strain variability. We developed Bayesian statistical models with multilevel analysis to quantify variability within a strain and variability between different strains and the uncertainty associated with these estimates. Furthermore, we measured the inactivation of 11 strains of C. jejuni in simulated gastric fluid with low pH, using the Weibullian survival model. The model was first developed for separate pH conditions, and then analyzed over a range of pH levels. We found that the model parameters developed under separate pH conditions exhibited clear dependence of survival on pH. In addition, the uncertainty of the variability between different strains could be described as the joint distribution of the model parameters. The latter model, including pH dependency, accurately predicted the number of surviving cells in individual as well as multiple strains. In conclusion, variabilities and uncertainties in inactivation could be simultaneously evaluated and interpreted via a probabilistic approach based on Bayesian theory. Such hierarchical Bayesian models could be useful for understanding individual strain variability in quantitative microbial risk assessment. Importance Since microbial strains vary in their growth and activation patterns in food materials, it is important to accurately predict these patterns for quantitative microbial risk assessment. However, most previous studies in this area have used highly resistant strains, which could lead to inaccurate predictions. Moreover, Variability including measurement errors and variability within a strain and between different strains, can contribute to predicted individual-level outcomes. Therefore, a multilevel framework is required to resolve these levels of variability and estimate their uncertainties. We developed a Bayesian predictive model for the survival of Campylobacter jejuni in simulated gastric conditions taking into account the variabilities and uncertainties. We demonstrated a high correspondence between predictions from the model and empirical measurements. The modeling procedure proposed in this study recommends a novel framework for predicting pathogen behavior, which can help improve quantitative microbial risk assessment during food production and distribution.
The objective of this study was to separately describe the fitting uncertainty and the variability of individual cell in bacterial survival kinetics during isothermal and nonisothermal thermal processing. The model describing bacterial survival behavior and its uncertainties and variabilities during non-isothermal inactivation was developed from survival kinetic data for Bacillus simplex spores under fifteen isothermal conditions. The fitting uncertainties in the parameters used in the primary Weibull model was described by using the bootstrap method. The variability of individual cells in thermotolerance and the true randomness in the number of dead cells were described by using the Markov chain Monte Carlo (MCMC) method. A second-order Monte Carlo (2DMC) model was developed by combining both the uncertainties and variabilities. The 2DMC model was compared with reduction behavior under three non-isothermal profiles for model validation. The bacterial death estimations were validated using experimentally observed surviving bacterial count data. The fitting uncertainties in the primary Weibull model parameters, the individual thermotolerance heterogeneity, and the true randomness of inactivated spore counts were successfully described under all the iso-thermal conditions. Furthermore, the 2DMC model successfully described the variances in the surviving bacterial counts during thermal inactivation for all three non-isothermal profiles. As a template for risk-based process designs, the proposed 2DMC simulation approach, which considers both uncertainty and variability, can facilitate the selection of appropriate thermal processing conditions ensuring both food safety and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.