Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.
The gas phase structure and excited state dynamics of o-aminophenol-H2O complex have been investigated using REMPI, IR-UV hole-burning spectroscopy, and pump-probe experiments with picoseconds laser pulses. The IR-UV spectroscopy indicates that the isomer responsible for the excitation spectrum corresponds to an orientation of the OH bond away from the NH2 group. The water molecule acts as H-bond acceptor of the OH group of the chromophore. The complexation of o-aminophenol with one water molecule induced an enhancement in the excited state lifetime on the band origin. The variation of the excited state lifetime of the complex with the excess energy from 1.4 ± 0.1 ns for the 0-0 band to 0.24 ± 0.3 ns for the band at 0-0 + 120 cm(-1) is very similar to the variation observed in the phenol-NH3 system. This experimental result suggests that the excited state hydrogen transfer reaction is the dominant channel for the non radiative pathway. Indeed, excited state ab initio calculations demonstrate that H transfer leading to the formation of the H3O(•) radical within the complex is the main reactive pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.