Fluralaner (Bravecto) is a recently marketed isoxazoline ectoparasiticide. This compound potently inhibits GABA-gated chloride channels (GABACls) and less potently glutamate-gated chloride channels (GluCls) in insects. The mechanism underlying this selectivity is unknown. Therefore, we sought to identify the amino acid residues causing the low potency of fluralaner toward GluCls. We examined the fluralaner sensitivity of mutant housefly () GluCls in which amino acid residues in the transmembrane subunit interface were replaced with the positionally equivalent amino acids of GABACls. Of these amino acids, substitution of an amino acid (Leu315) in the third transmembrane region (TM3) with an aromatic amino acid dramatically enhanced the potency of fluralaner in the GluCls. In stark contrast to the enhancement of fluralaner potency, this mutation eliminated the activation of currents and the potentiation but not the antagonism of glutamate responses that are otherwise all elicited by the macrolide parasiticide ivermectin (IVM). Our findings indicate that the amino acid Leu315 in GluCls plays significant roles in determining the selectivity of fluralaner and IVM for these channels. Given the high sequence similarity of TM3, this may hold true more widely for the GluCls and GABACls of other insect species.
Doping of nickel into AgGaS2 yields a new absorption band, at a wavelength longer than the intrinsic absorption band of the AgGaS2 host. The doped nickel forms an electron donor level in a forbidden band of AgGaS2 . The nickel-doped AgGaS2 with rhodium co-catalyst shows photocatalytic activity for sacrificial H2 evolution under the light of up to 760 nm due to the transition from the electron donor level consisting of Ni(2+) to the conduction band of AgGaS2 . Apparent quantum yields for the sacrificial H2 evolution at 540-620 nm are about 1 %. Moreover, the nickel-doped AgGa0.75 In0.25 S2 also responds to near-IR light, up to 900 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.