The strain dependence of stability and diffusion barrier height of the O vacancy in Si oxide is examined using the first-principles calculation. It is found that the stability and the diffusion barrier height increase as the oxide is compressed. The analysis shows that the diffusion barrier height is determined by the Si–Si distance of the O vacancy. Based on these results, the dielectric breakdown of the gate Si oxide film in the three-dimensional structure metal-oxide-semiconductor field-effect transistor is also considered. It is suggested that the interfacial O-vacancy density increases because the interfacial oxide is subjected to compressive strain. On the other hand, the surface O-vacancy density decreases and the surface O-vacancy diffusion is promoted because the surface oxide is subjected to tensile strain. The reliability of the oxide film might be thus affected by the strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.